os/kernelhwsrv/kernel/eka/euser/maths/um_pow10.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32\euser\maths\um_pow10.cpp
sl@0
    15
// Return a power of 10 as a TReal
sl@0
    16
// 
sl@0
    17
//
sl@0
    18
sl@0
    19
#include "um_std.h"
sl@0
    20
sl@0
    21
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
sl@0
    22
#error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
sl@0
    23
#endif
sl@0
    24
sl@0
    25
sl@0
    26
// Tables of powers of 10
sl@0
    27
LOCAL_D const TUint32 PositivePowersOfTen[] =
sl@0
    28
	{
sl@0
    29
// Positive powers 1-31
sl@0
    30
	0x00000000,0xA0000000,0x80020000,
sl@0
    31
	0x00000000,0xC8000000,0x80050000,
sl@0
    32
	0x00000000,0xFA000000,0x80080000,
sl@0
    33
	0x00000000,0x9C400000,0x800C0000,
sl@0
    34
	0x00000000,0xC3500000,0x800F0000,
sl@0
    35
	0x00000000,0xF4240000,0x80120000,
sl@0
    36
	0x00000000,0x98968000,0x80160000,
sl@0
    37
	0x00000000,0xBEBC2000,0x80190000,
sl@0
    38
	0x00000000,0xEE6B2800,0x801C0000,
sl@0
    39
	0x00000000,0x9502F900,0x80200000,
sl@0
    40
	0x00000000,0xBA43B740,0x80230000,
sl@0
    41
	0x00000000,0xE8D4A510,0x80260000,
sl@0
    42
	0x00000000,0x9184E72A,0x802A0000,
sl@0
    43
	0x80000000,0xB5E620F4,0x802D0000,
sl@0
    44
	0xA0000000,0xE35FA931,0x80300000,
sl@0
    45
	0x04000000,0x8E1BC9BF,0x80340000,
sl@0
    46
	0xC5000000,0xB1A2BC2E,0x80370000,
sl@0
    47
	0x76400000,0xDE0B6B3A,0x803A0000,
sl@0
    48
	0x89E80000,0x8AC72304,0x803E0000,
sl@0
    49
	0xAC620000,0xAD78EBC5,0x80410000,
sl@0
    50
	0x177A8000,0xD8D726B7,0x80440000,
sl@0
    51
	0x6EAC9000,0x87867832,0x80480000,
sl@0
    52
	0x0A57B400,0xA968163F,0x804B0000,
sl@0
    53
	0xCCEDA100,0xD3C21BCE,0x804E0000,
sl@0
    54
	0x401484A0,0x84595161,0x80520000,
sl@0
    55
	0x9019A5C8,0xA56FA5B9,0x80550000,
sl@0
    56
	0xF4200F3A,0xCECB8F27,0x80580000,
sl@0
    57
	0xF8940984,0x813F3978,0x805C0000,
sl@0
    58
	0x36B90BE5,0xA18F07D7,0x805F0000,
sl@0
    59
	0x04674EDF,0xC9F2C9CD,0x80620000,
sl@0
    60
	0x45812296,0xFC6F7C40,0x80650000,
sl@0
    61
sl@0
    62
// Positive powers 32-31*32 in steps of 32
sl@0
    63
	0x2B70B59E,0x9DC5ADA8,0x80690000,
sl@0
    64
	0xFFCFA6D5,0xC2781F49,0x80D30000,
sl@0
    65
	0xC59B14A3,0xEFB3AB16,0x813D0000,
sl@0
    66
	0x80E98CE0,0x93BA47C9,0x81A80000,
sl@0
    67
	0x7FE617AA,0xB616A12B,0x82120000,
sl@0
    68
	0x3927556B,0xE070F78D,0x827C0000,
sl@0
    69
	0xE33CC930,0x8A5296FF,0x82E70000,
sl@0
    70
	0x9DF9DE8E,0xAA7EEBFB,0x83510000,
sl@0
    71
	0x5C6A2F8C,0xD226FC19,0x83BB0000,
sl@0
    72
	0xF2CCE376,0x81842F29,0x84260000,
sl@0
    73
	0xDB900AD2,0x9FA42700,0x84900000,
sl@0
    74
	0xAEF8AA17,0xC4C5E310,0x84FA0000,
sl@0
    75
	0xE9B09C59,0xF28A9C07,0x85640000,
sl@0
    76
	0xEBF7F3D4,0x957A4AE1,0x85CF0000,
sl@0
    77
	0x0795A262,0xB83ED8DC,0x86390000,
sl@0
    78
	0xA60E91C7,0xE319A0AE,0x86A30000,
sl@0
    79
	0x432D7BC3,0x8BF61451,0x870E0000,
sl@0
    80
	0x6B6795FD,0xAC83FB89,0x87780000,
sl@0
    81
	0xB8FA79B0,0xD4A44FB4,0x87E20000,
sl@0
    82
	0xE54A9D1D,0x830CF791,0x884D0000,
sl@0
    83
	0xADE24964,0xA1884B69,0x88B70000,
sl@0
    84
	0x1F8F01CC,0xC71AA36A,0x89210000,
sl@0
    85
	0x437028F3,0xF56A298F,0x898B0000,
sl@0
    86
	0xCD00A68C,0x973F9CA8,0x89F60000,
sl@0
    87
	0xD7CC9ECD,0xBA6D9B40,0x8A600000,
sl@0
    88
	0x8D737F0E,0xE5CA5A0B,0x8ACA0000,
sl@0
    89
	0x1346BDA5,0x8D9E89D1,0x8B350000,
sl@0
    90
	0xE3D5DBEA,0xAE8F2B2C,0x8B9F0000,
sl@0
    91
	0x5A0C1B30,0xD7293020,0x8C090000,
sl@0
    92
	0x0D2ECFD2,0x849A672A,0x8C740000,
sl@0
    93
	0x41FA93DE,0xA3722C13,0x8CDE0000,
sl@0
    94
sl@0
    95
// Positive powers 1024-8*1024 in steps of 1024
sl@0
    96
	0x81750C17,0xC9767586,0x8D480000,
sl@0
    97
	0xC53D5DE5,0x9E8B3B5D,0x9A920000,
sl@0
    98
	0xD88B5A8B,0xF9895D25,0xA7DB0000,
sl@0
    99
	0x8A20979B,0xC4605202,0xB5250000,
sl@0
   100
	0xFED3AB23,0x9A8A7EF0,0xC26F0000,
sl@0
   101
	0x73A56037,0xF33C80E8,0xCFB80000,
sl@0
   102
	0x61889066,0xBF6B0EC4,0xDD020000,
sl@0
   103
	0x7FAF211A,0x96A3A1D1,0xEA4C0000
sl@0
   104
	};
sl@0
   105
sl@0
   106
LOCAL_D const TUint32 NegativePowersOfTen[] =
sl@0
   107
	{
sl@0
   108
// Negative powers 1-31
sl@0
   109
	0xCCCCCCCD,0xCCCCCCCC,0x7FFB0000,
sl@0
   110
	0x70A3D70A,0xA3D70A3D,0x7FF80000,
sl@0
   111
	0x8D4FDF3B,0x83126E97,0x7FF50000,
sl@0
   112
	0xE219652C,0xD1B71758,0x7FF10000,
sl@0
   113
	0x1B478423,0xA7C5AC47,0x7FEE0000,
sl@0
   114
	0xAF6C69B6,0x8637BD05,0x7FEB0000,
sl@0
   115
	0xE57A42BC,0xD6BF94D5,0x7FE70000,
sl@0
   116
	0x8461CEFD,0xABCC7711,0x7FE40000,
sl@0
   117
	0x36B4A597,0x89705F41,0x7FE10000,
sl@0
   118
	0xBDEDD5BF,0xDBE6FECE,0x7FDD0000,
sl@0
   119
	0xCB24AAFF,0xAFEBFF0B,0x7FDA0000,
sl@0
   120
	0x6F5088CC,0x8CBCCC09,0x7FD70000,
sl@0
   121
	0x4BB40E13,0xE12E1342,0x7FD30000,
sl@0
   122
	0x095CD80F,0xB424DC35,0x7FD00000,
sl@0
   123
	0x3AB0ACD9,0x901D7CF7,0x7FCD0000,
sl@0
   124
	0xC44DE15B,0xE69594BE,0x7FC90000,
sl@0
   125
	0x36A4B449,0xB877AA32,0x7FC60000,
sl@0
   126
	0x921D5D07,0x9392EE8E,0x7FC30000,
sl@0
   127
	0xB69561A5,0xEC1E4A7D,0x7FBF0000,
sl@0
   128
	0x92111AEB,0xBCE50864,0x7FBC0000,
sl@0
   129
	0x74DA7BEF,0x971DA050,0x7FB90000,
sl@0
   130
	0xBAF72CB1,0xF1C90080,0x7FB50000,
sl@0
   131
	0x95928A27,0xC16D9A00,0x7FB20000,
sl@0
   132
	0x44753B53,0x9ABE14CD,0x7FAF0000,
sl@0
   133
	0xD3EEC551,0xF79687AE,0x7FAB0000,
sl@0
   134
	0x76589DDB,0xC6120625,0x7FA80000,
sl@0
   135
	0x91E07E48,0x9E74D1B7,0x7FA50000,
sl@0
   136
	0x8300CA0E,0xFD87B5F2,0x7FA10000,
sl@0
   137
	0x359A3B3E,0xCAD2F7F5,0x7F9E0000,
sl@0
   138
	0x5E14FC32,0xA2425FF7,0x7F9B0000,
sl@0
   139
	0x4B43FCF5,0x81CEB32C,0x7F980000,
sl@0
   140
sl@0
   141
// Negative powers 32-31*32 in steps of 32
sl@0
   142
	0x453994BA,0xCFB11EAD,0x7F940000,
sl@0
   143
	0xA539E9A5,0xA87FEA27,0x7F2A0000,
sl@0
   144
	0xFD75539B,0x88B402F7,0x7EC00000,
sl@0
   145
	0x64BCE4A1,0xDDD0467C,0x7E550000,
sl@0
   146
	0xDB73A093,0xB3F4E093,0x7DEB0000,
sl@0
   147
	0x5423CC06,0x91FF8377,0x7D810000,
sl@0
   148
	0x4A314EBE,0xECE53CEC,0x7D160000,
sl@0
   149
	0x637A193A,0xC0314325,0x7CAC0000,
sl@0
   150
	0x836AC577,0x9BECCE62,0x7C420000,
sl@0
   151
	0x478238D1,0xFD00B897,0x7BD70000,
sl@0
   152
	0x46F34F7D,0xCD42A113,0x7B6D0000,
sl@0
   153
	0xB11B0858,0xA686E3E8,0x7B030000,
sl@0
   154
	0x3FFC68A6,0x871A4981,0x7A990000,
sl@0
   155
	0xB6074245,0xDB377599,0x7A2E0000,
sl@0
   156
	0x79007736,0xB1D983B4,0x79C40000,
sl@0
   157
	0xDB23D21C,0x9049EE32,0x795A0000,
sl@0
   158
	0x467F9466,0xEA1F3806,0x78EF0000,
sl@0
   159
	0xEE5092C7,0xBDF139F0,0x78850000,
sl@0
   160
	0xB4730DD0,0x9A197865,0x781B0000,
sl@0
   161
	0x8871347D,0xFA0A6CDB,0x77B00000,
sl@0
   162
	0x3C8736FC,0xCADB6D31,0x77460000,
sl@0
   163
	0x52EB8375,0xA493C750,0x76DC0000,
sl@0
   164
	0x774FB85E,0x85855C0F,0x76720000,
sl@0
   165
	0x505DE96B,0xD8A66D4A,0x76070000,
sl@0
   166
	0xCB39A7B1,0xAFC47766,0x759D0000,
sl@0
   167
	0xA9B05AC8,0x8E997872,0x75330000,
sl@0
   168
	0xFDC06462,0xE761832E,0x74C80000,
sl@0
   169
	0xBB827F2D,0xBBB7EF38,0x745E0000,
sl@0
   170
	0xE1F045DD,0x984B9B19,0x73F40000,
sl@0
   171
	0x3613F568,0xF71D01E0,0x73890000,
sl@0
   172
	0x3F64789E,0xC87B6D2F,0x731F0000,
sl@0
   173
sl@0
   174
// Negative powers 1024-8*1024 in steps of 1024
sl@0
   175
	0xDA57C0BE,0xA2A682A5,0x72B50000,
sl@0
   176
	0x34362DE4,0xCEAE534F,0x656B0000,
sl@0
   177
	0x91575A88,0x8350BF3C,0x58220000,
sl@0
   178
	0xD2CE9FDE,0xA6DD04C8,0x4AD80000,
sl@0
   179
	0x0DA5D8E8,0xD408CB01,0x3D8E0000,
sl@0
   180
	0x22EB58E9,0x86B77A60,0x30450000,
sl@0
   181
	0x4779611E,0xAB2F7655,0x22FB0000,
sl@0
   182
	0x686DA869,0xD986C20B,0x15B10000
sl@0
   183
	};
sl@0
   184
sl@0
   185
TInt Math::MultPow10X(TRealX& aTrg, TInt aPower)
sl@0
   186
	{
sl@0
   187
	if (aTrg.IsZero())
sl@0
   188
		return KErrNone;
sl@0
   189
	if (!aTrg.IsFinite())
sl@0
   190
		{
sl@0
   191
		if (aTrg.IsNaN())
sl@0
   192
			return KErrArgument;
sl@0
   193
		return KErrOverflow;
sl@0
   194
		}
sl@0
   195
	if (aPower==0)
sl@0
   196
		return KErrNone;
sl@0
   197
	// smallest non-zero TRealX is 2^-32766=2.83E-9864
sl@0
   198
	// largest TRealX is 2^32768=1.42E+9864
sl@0
   199
	// Therefore aPower>=19728 guarantees an overflow
sl@0
   200
	// and aPower<=-19728 guarantees an underflow
sl@0
   201
	if (aPower>=19728)
sl@0
   202
		{
sl@0
   203
		aTrg.SetInfinite(aTrg.iSign);
sl@0
   204
		return KErrOverflow;
sl@0
   205
		}
sl@0
   206
	if (aPower<=-19728)
sl@0
   207
		{
sl@0
   208
		aTrg.SetZero(aTrg.iSign);
sl@0
   209
		return KErrUnderflow;
sl@0
   210
		}
sl@0
   211
	const TRealX* powTab;
sl@0
   212
	if (aPower>0)
sl@0
   213
		powTab=(const TRealX*)PositivePowersOfTen;
sl@0
   214
	else
sl@0
   215
		{
sl@0
   216
		aPower=-aPower;
sl@0
   217
		powTab=(const TRealX*)NegativePowersOfTen;
sl@0
   218
		}
sl@0
   219
	TInt r=KErrNone;
sl@0
   220
	while(aPower>=8192)
sl@0
   221
		{
sl@0
   222
		aPower-=8192;
sl@0
   223
		r=aTrg.MultEq(powTab[31+31+7]);
sl@0
   224
		if (r!=KErrNone)
sl@0
   225
			return r;
sl@0
   226
		}
sl@0
   227
	TInt bottom5=aPower & 0x1f;
sl@0
   228
	TInt middle5=(aPower>>5)&0x1f;
sl@0
   229
	TInt top3=(aPower>>10);
sl@0
   230
	if (top3)
sl@0
   231
		r=aTrg.MultEq(powTab[31+31+top3-1]);
sl@0
   232
	if (r==KErrNone && middle5)
sl@0
   233
		r=aTrg.MultEq(powTab[31+middle5-1]);
sl@0
   234
	if (r==KErrNone && bottom5)
sl@0
   235
		r=aTrg.MultEq(powTab[bottom5-1]);
sl@0
   236
	return r;
sl@0
   237
	}
sl@0
   238
sl@0
   239
sl@0
   240
sl@0
   241
sl@0
   242
EXPORT_C TInt Math::Pow10(TReal &aTrg,const TInt aExp)
sl@0
   243
/**
sl@0
   244
Calculates the value of 10 to the power of x.
sl@0
   245
sl@0
   246
@param aTrg A reference containing the result. 
sl@0
   247
@param aExp The power to which 10 is to be raised.
sl@0
   248
sl@0
   249
@return KErrNone if successful, otherwise another of
sl@0
   250
        the system-wide error codes.
sl@0
   251
*/
sl@0
   252
//
sl@0
   253
// Write the binary floating point representation of a power of 10 to aSrc
sl@0
   254
// Returns KErrNone if OK or a negative error number otherwise.
sl@0
   255
//
sl@0
   256
	{
sl@0
   257
#ifndef __USE_VFP_MATH
sl@0
   258
	TRealX x=1;
sl@0
   259
	TInt r=Math::MultPow10X(x,aExp);
sl@0
   260
	TInt s=x.GetTReal(aTrg);
sl@0
   261
	return (r==KErrNone)?s:r;
sl@0
   262
#else // __USE_VFP_MATH
sl@0
   263
	return Math::Pow(aTrg,10,aExp);
sl@0
   264
#endif
sl@0
   265
	}