moel@1: /* moel@1: moel@1: Version: MPL 1.1/GPL 2.0/LGPL 2.1 moel@1: moel@1: The contents of this file are subject to the Mozilla Public License Version moel@1: 1.1 (the "License"); you may not use this file except in compliance with moel@1: the License. You may obtain a copy of the License at moel@1: moel@1: http://www.mozilla.org/MPL/ moel@1: moel@1: Software distributed under the License is distributed on an "AS IS" basis, moel@1: WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License moel@1: for the specific language governing rights and limitations under the License. moel@1: moel@1: The Original Code is the Open Hardware Monitor code. moel@1: moel@1: The Initial Developer of the Original Code is moel@1: Michael Möller . moel@264: Portions created by the Initial Developer are Copyright (C) 2009-2011 moel@1: the Initial Developer. All Rights Reserved. moel@1: moel@1: Contributor(s): moel@1: moel@1: Alternatively, the contents of this file may be used under the terms of moel@1: either the GNU General Public License Version 2 or later (the "GPL"), or moel@1: the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), moel@1: in which case the provisions of the GPL or the LGPL are applicable instead moel@1: of those above. If you wish to allow use of your version of this file only moel@1: under the terms of either the GPL or the LGPL, and not to allow others to moel@1: use your version of this file under the terms of the MPL, indicate your moel@1: decision by deleting the provisions above and replace them with the notice moel@1: and other provisions required by the GPL or the LGPL. If you do not delete moel@1: the provisions above, a recipient may use your version of this file under moel@1: the terms of any one of the MPL, the GPL or the LGPL. moel@1: moel@1: */ moel@1: moel@1: using System; moel@219: using System.Globalization; moel@219: using System.Text; moel@1: moel@1: namespace OpenHardwareMonitor.Hardware.CPU { moel@191: internal sealed class IntelCPU : GenericCPU { moel@46: moel@219: private enum Microarchitecture { moel@219: Unknown, moel@264: NetBurst, moel@219: Core, moel@219: Atom, moel@249: Nehalem, moel@249: SandyBridge moel@219: } moel@219: moel@195: private readonly Sensor[] coreTemperatures; moel@195: private readonly Sensor[] coreClocks; moel@195: private readonly Sensor busClock; moel@63: moel@219: private readonly Microarchitecture microarchitecture; moel@219: private readonly double timeStampCounterMultiplier; moel@79: moel@1: private const uint IA32_THERM_STATUS_MSR = 0x019C; moel@4: private const uint IA32_TEMPERATURE_TARGET = 0x01A2; moel@44: private const uint IA32_PERF_STATUS = 0x0198; moel@46: private const uint MSR_PLATFORM_INFO = 0xCE; moel@1: moel@69: private float[] Floats(float f) { moel@69: float[] result = new float[coreCount]; moel@69: for (int i = 0; i < coreCount; i++) moel@69: result[i] = f; moel@69: return result; moel@69: } moel@69: moel@249: private float[] GetTjMaxFromMSR() { moel@249: uint eax, edx; moel@249: float[] result = new float[coreCount]; moel@249: for (int i = 0; i < coreCount; i++) { moel@249: if (Ring0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax, moel@249: out edx, 1UL << cpuid[i][0].Thread)) { moel@249: result[i] = (eax >> 16) & 0xFF; moel@249: } else { moel@249: result[i] = 100; moel@249: } moel@249: } moel@249: return result; moel@249: } moel@249: moel@191: public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings) moel@191: : base(processorIndex, cpuid, settings) moel@191: { moel@219: // set tjMax moel@69: float[] tjMax; moel@49: switch (family) { moel@49: case 0x06: { moel@49: switch (model) { moel@219: case 0x0F: // Intel Core 2 (65nm) moel@219: microarchitecture = Microarchitecture.Core; moel@49: switch (stepping) { moel@49: case 0x06: // B2 moel@49: switch (coreCount) { moel@49: case 2: moel@69: tjMax = Floats(80 + 10); break; moel@49: case 4: moel@69: tjMax = Floats(90 + 10); break; moel@49: default: moel@69: tjMax = Floats(85 + 10); break; moel@49: } moel@69: tjMax = Floats(80 + 10); break; moel@49: case 0x0B: // G0 moel@69: tjMax = Floats(90 + 10); break; moel@49: case 0x0D: // M0 moel@69: tjMax = Floats(85 + 10); break; moel@49: default: moel@69: tjMax = Floats(85 + 10); break; moel@49: } break; moel@219: case 0x17: // Intel Core 2 (45nm) moel@219: microarchitecture = Microarchitecture.Core; moel@69: tjMax = Floats(100); break; moel@114: case 0x1C: // Intel Atom (45nm) moel@219: microarchitecture = Microarchitecture.Atom; moel@114: switch (stepping) { moel@114: case 0x02: // C0 moel@114: tjMax = Floats(90); break; moel@114: case 0x0A: // A0, B0 moel@114: tjMax = Floats(100); break; moel@114: default: moel@114: tjMax = Floats(90); break; moel@191: } break; moel@49: case 0x1A: // Intel Core i7 LGA1366 (45nm) moel@49: case 0x1E: // Intel Core i5, i7 LGA1156 (45nm) moel@249: case 0x1F: // Intel Core i5, i7 moel@49: case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm) moel@91: case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core moel@249: case 0x2E: // Intel Xeon Processor 7500 series moel@219: microarchitecture = Microarchitecture.Nehalem; moel@249: tjMax = GetTjMaxFromMSR(); moel@249: break; moel@249: case 0x2A: // Intel Core i5, i7 2xxx LGA1155 (32nm) moel@249: case 0x2D: // Next Generation Intel Xeon Processor moel@249: microarchitecture = Microarchitecture.SandyBridge; moel@249: tjMax = GetTjMaxFromMSR(); moel@49: break; moel@49: default: moel@219: microarchitecture = Microarchitecture.Unknown; moel@219: tjMax = Floats(100); moel@219: break; moel@49: } moel@49: } break; moel@264: case 0x0F: { moel@264: switch (model) { moel@264: case 0x00: // Pentium 4 (180nm) moel@264: case 0x01: // Pentium 4 (130nm) moel@264: case 0x02: // Pentium 4 (130nm) moel@264: case 0x03: // Pentium 4, Celeron D (90nm) moel@264: case 0x04: // Pentium 4, Pentium D, Celeron D (90nm) moel@264: case 0x06: // Pentium 4, Pentium D, Celeron D (65nm) moel@264: microarchitecture = Microarchitecture.NetBurst; moel@264: tjMax = Floats(100); moel@264: break; moel@264: default: moel@264: microarchitecture = Microarchitecture.Unknown; moel@264: tjMax = Floats(100); moel@264: break; moel@264: } moel@264: } break; moel@219: default: moel@219: microarchitecture = Microarchitecture.Unknown; moel@219: tjMax = Floats(100); moel@219: break; moel@219: } moel@219: moel@219: // set timeStampCounterMultiplier moel@219: switch (microarchitecture) { moel@264: case Microarchitecture.NetBurst: moel@219: case Microarchitecture.Atom: moel@219: case Microarchitecture.Core: { moel@219: uint eax, edx; moel@236: if (Ring0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) { moel@219: timeStampCounterMultiplier = moel@219: ((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1); moel@219: } moel@219: } break; moel@249: case Microarchitecture.Nehalem: moel@249: case Microarchitecture.SandyBridge: { moel@219: uint eax, edx; moel@236: if (Ring0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) { moel@219: timeStampCounterMultiplier = (eax >> 8) & 0xff; moel@219: } moel@219: } break; moel@264: default: { moel@264: timeStampCounterMultiplier = 1; moel@264: uint eax, edx; moel@264: if (Ring0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) { moel@264: timeStampCounterMultiplier = moel@264: ((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1); moel@264: } moel@264: } break; moel@49: } moel@1: moel@44: // check if processor supports a digital thermal sensor moel@191: if (cpuid[0][0].Data.GetLength(0) > 6 && moel@191: (cpuid[0][0].Data[6, 0] & 1) != 0) { moel@44: coreTemperatures = new Sensor[coreCount]; moel@44: for (int i = 0; i < coreTemperatures.Length; i++) { moel@134: coreTemperatures[i] = new Sensor(CoreString(i), i, moel@195: SensorType.Temperature, this, new [] { moel@63: new ParameterDescription( moel@122: "TjMax [°C]", "TjMax temperature of the core.\n" + moel@69: "Temperature = TjMax - TSlope * Value.", tjMax[i]), moel@122: new ParameterDescription("TSlope [°C]", moel@122: "Temperature slope of the digital thermal sensor.\n" + moel@165: "Temperature = TjMax - TSlope * Value.", 1)}, settings); moel@155: ActivateSensor(coreTemperatures[i]); moel@44: } moel@44: } else { moel@44: coreTemperatures = new Sensor[0]; moel@1: } moel@49: moel@191: busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings); moel@44: coreClocks = new Sensor[coreCount]; moel@44: for (int i = 0; i < coreClocks.Length; i++) { moel@49: coreClocks[i] = moel@165: new Sensor(CoreString(i), i + 1, SensorType.Clock, this, settings); moel@201: if (HasTimeStampCounter) moel@79: ActivateSensor(coreClocks[i]); moel@44: } moel@191: moel@191: Update(); moel@1: } moel@1: moel@191: protected override uint[] GetMSRs() { moel@195: return new [] { moel@191: MSR_PLATFORM_INFO, moel@191: IA32_PERF_STATUS , moel@191: IA32_THERM_STATUS_MSR, moel@191: IA32_TEMPERATURE_TARGET moel@191: }; moel@1: } moel@1: moel@219: public override string GetReport() { moel@219: StringBuilder r = new StringBuilder(); moel@219: r.Append(base.GetReport()); moel@219: moel@264: r.Append("Microarchitecture: "); moel@264: r.AppendLine(microarchitecture.ToString()); moel@219: r.Append("Time Stamp Counter Multiplier: "); moel@219: r.AppendLine(timeStampCounterMultiplier.ToString( moel@219: CultureInfo.InvariantCulture)); moel@219: r.AppendLine(); moel@219: moel@219: return r.ToString(); moel@219: } moel@219: moel@191: public override void Update() { moel@191: base.Update(); moel@1: moel@1: for (int i = 0; i < coreTemperatures.Length; i++) { moel@46: uint eax, edx; moel@236: if (Ring0.RdmsrTx( moel@191: IA32_THERM_STATUS_MSR, out eax, out edx, moel@238: 1UL << cpuid[i][0].Thread)) { moel@1: // if reading is valid moel@1: if ((eax & 0x80000000) != 0) { moel@1: // get the dist from tjMax from bits 22:16 moel@63: float deltaT = ((eax & 0x007F0000) >> 16); moel@63: float tjMax = coreTemperatures[i].Parameters[0].Value; moel@63: float tSlope = coreTemperatures[i].Parameters[1].Value; moel@63: coreTemperatures[i].Value = tjMax - tSlope * deltaT; moel@24: } else { moel@155: coreTemperatures[i].Value = null; moel@1: } moel@79: } moel@24: } moel@24: moel@201: if (HasTimeStampCounter) { moel@191: double newBusClock = 0; moel@191: uint eax, edx; moel@191: for (int i = 0; i < coreClocks.Length; i++) { moel@191: System.Threading.Thread.Sleep(1); moel@236: if (Ring0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx, moel@238: 1UL << cpuid[i][0].Thread)) moel@219: { moel@219: newBusClock = moel@219: TimeStampCounterFrequency / timeStampCounterMultiplier; moel@250: switch (microarchitecture) { moel@250: case Microarchitecture.Nehalem: { moel@250: uint multiplier = eax & 0xff; moel@250: coreClocks[i].Value = (float)(multiplier * newBusClock); moel@250: } break; moel@250: case Microarchitecture.SandyBridge: { moel@250: uint multiplier = (eax >> 8) & 0xff; moel@250: coreClocks[i].Value = (float)(multiplier * newBusClock); moel@250: } break; moel@250: default: { moel@250: double multiplier = moel@250: ((eax >> 8) & 0x1f) + 0.5 * ((eax >> 14) & 1); moel@250: coreClocks[i].Value = (float)(multiplier * newBusClock); moel@250: } break; moel@250: } moel@219: } else { moel@201: // if IA32_PERF_STATUS is not available, assume TSC frequency moel@201: coreClocks[i].Value = (float)TimeStampCounterFrequency; moel@46: } moel@44: } moel@191: if (newBusClock > 0) { moel@191: this.busClock.Value = (float)newBusClock; moel@191: ActivateSensor(this.busClock); moel@191: } moel@44: } moel@46: } moel@191: } moel@1: }