Changed a few types to internal (instead of public) in the Open Hardware Monitor library.
3 This Source Code Form is subject to the terms of the Mozilla Public
4 License, v. 2.0. If a copy of the MPL was not distributed with this
5 file, You can obtain one at http://mozilla.org/MPL/2.0/.
7 Copyright (C) 2009-2012 Michael Möller <mmoeller@openhardwaremonitor.org>
12 using System.Globalization;
15 namespace OpenHardwareMonitor.Hardware.CPU {
16 internal sealed class IntelCPU : GenericCPU {
18 private enum Microarchitecture {
28 private readonly Sensor[] coreTemperatures;
29 private readonly Sensor packageTemperature;
30 private readonly Sensor[] coreClocks;
31 private readonly Sensor busClock;
32 private readonly Sensor[] powerSensors;
34 private readonly Microarchitecture microarchitecture;
35 private readonly double timeStampCounterMultiplier;
37 private const uint IA32_THERM_STATUS_MSR = 0x019C;
38 private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
39 private const uint IA32_PERF_STATUS = 0x0198;
40 private const uint MSR_PLATFORM_INFO = 0xCE;
41 private const uint IA32_PACKAGE_THERM_STATUS = 0x1B1;
42 private const uint MSR_RAPL_POWER_UNIT = 0x606;
43 private const uint MSR_PKG_ENERY_STATUS = 0x611;
44 private const uint MSR_DRAM_ENERGY_STATUS = 0x619;
45 private const uint MSR_PP0_ENERY_STATUS = 0x639;
46 private const uint MSR_PP1_ENERY_STATUS = 0x641;
48 private readonly uint[] energyStatusMSRs = { MSR_PKG_ENERY_STATUS,
49 MSR_PP0_ENERY_STATUS, MSR_PP1_ENERY_STATUS, MSR_DRAM_ENERGY_STATUS };
50 private readonly string[] powerSensorLabels =
51 { "CPU Package", "CPU Cores", "CPU Graphics", "CPU DRAM" };
52 private float energyUnitMultiplier = 0;
53 private DateTime[] lastEnergyTime;
54 private uint[] lastEnergyConsumed;
57 private float[] Floats(float f) {
58 float[] result = new float[coreCount];
59 for (int i = 0; i < coreCount; i++)
64 private float[] GetTjMaxFromMSR() {
66 float[] result = new float[coreCount];
67 for (int i = 0; i < coreCount; i++) {
68 if (Ring0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
69 out edx, 1UL << cpuid[i][0].Thread)) {
70 result[i] = (eax >> 16) & 0xFF;
78 public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings)
79 : base(processorIndex, cpuid, settings) {
85 case 0x0F: // Intel Core 2 (65nm)
86 microarchitecture = Microarchitecture.Core;
91 tjMax = Floats(80 + 10); break;
93 tjMax = Floats(90 + 10); break;
95 tjMax = Floats(85 + 10); break;
97 tjMax = Floats(80 + 10); break;
99 tjMax = Floats(90 + 10); break;
101 tjMax = Floats(85 + 10); break;
103 tjMax = Floats(85 + 10); break;
105 case 0x17: // Intel Core 2 (45nm)
106 microarchitecture = Microarchitecture.Core;
107 tjMax = Floats(100); break;
108 case 0x1C: // Intel Atom (45nm)
109 microarchitecture = Microarchitecture.Atom;
112 tjMax = Floats(90); break;
114 tjMax = Floats(100); break;
116 tjMax = Floats(90); break;
118 case 0x1A: // Intel Core i7 LGA1366 (45nm)
119 case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
120 case 0x1F: // Intel Core i5, i7
121 case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
122 case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
123 case 0x2E: // Intel Xeon Processor 7500 series (45nm)
124 case 0x2F: // Intel Xeon Processor (32nm)
125 microarchitecture = Microarchitecture.Nehalem;
126 tjMax = GetTjMaxFromMSR();
128 case 0x2A: // Intel Core i5, i7 2xxx LGA1155 (32nm)
129 case 0x2D: // Next Generation Intel Xeon, i7 3xxx LGA2011 (32nm)
130 microarchitecture = Microarchitecture.SandyBridge;
131 tjMax = GetTjMaxFromMSR();
133 case 0x3A: // Intel Core i5, i7 3xxx LGA1155 (22nm)
134 microarchitecture = Microarchitecture.IvyBridge;
135 tjMax = GetTjMaxFromMSR();
138 microarchitecture = Microarchitecture.Unknown;
145 case 0x00: // Pentium 4 (180nm)
146 case 0x01: // Pentium 4 (130nm)
147 case 0x02: // Pentium 4 (130nm)
148 case 0x03: // Pentium 4, Celeron D (90nm)
149 case 0x04: // Pentium 4, Pentium D, Celeron D (90nm)
150 case 0x06: // Pentium 4, Pentium D, Celeron D (65nm)
151 microarchitecture = Microarchitecture.NetBurst;
155 microarchitecture = Microarchitecture.Unknown;
161 microarchitecture = Microarchitecture.Unknown;
166 // set timeStampCounterMultiplier
167 switch (microarchitecture) {
168 case Microarchitecture.NetBurst:
169 case Microarchitecture.Atom:
170 case Microarchitecture.Core: {
172 if (Ring0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) {
173 timeStampCounterMultiplier =
174 ((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1);
177 case Microarchitecture.Nehalem:
178 case Microarchitecture.SandyBridge:
179 case Microarchitecture.IvyBridge: {
181 if (Ring0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
182 timeStampCounterMultiplier = (eax >> 8) & 0xff;
186 timeStampCounterMultiplier = 0;
190 // check if processor supports a digital thermal sensor at core level
191 if (cpuid[0][0].Data.GetLength(0) > 6 &&
192 (cpuid[0][0].Data[6, 0] & 1) != 0 &&
193 microarchitecture != Microarchitecture.Unknown)
195 coreTemperatures = new Sensor[coreCount];
196 for (int i = 0; i < coreTemperatures.Length; i++) {
197 coreTemperatures[i] = new Sensor(CoreString(i), i,
198 SensorType.Temperature, this, new[] {
199 new ParameterDescription(
200 "TjMax [°C]", "TjMax temperature of the core sensor.\n" +
201 "Temperature = TjMax - TSlope * Value.", tjMax[i]),
202 new ParameterDescription("TSlope [°C]",
203 "Temperature slope of the digital thermal sensor.\n" +
204 "Temperature = TjMax - TSlope * Value.", 1)}, settings);
205 ActivateSensor(coreTemperatures[i]);
208 coreTemperatures = new Sensor[0];
211 // check if processor supports a digital thermal sensor at package level
212 if (cpuid[0][0].Data.GetLength(0) > 6 &&
213 (cpuid[0][0].Data[6, 0] & 0x40) != 0 &&
214 microarchitecture != Microarchitecture.Unknown)
216 packageTemperature = new Sensor("CPU Package",
217 coreTemperatures.Length, SensorType.Temperature, this, new[] {
218 new ParameterDescription(
219 "TjMax [°C]", "TjMax temperature of the package sensor.\n" +
220 "Temperature = TjMax - TSlope * Value.", tjMax[0]),
221 new ParameterDescription("TSlope [°C]",
222 "Temperature slope of the digital thermal sensor.\n" +
223 "Temperature = TjMax - TSlope * Value.", 1)}, settings);
224 ActivateSensor(packageTemperature);
227 busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings);
228 coreClocks = new Sensor[coreCount];
229 for (int i = 0; i < coreClocks.Length; i++) {
231 new Sensor(CoreString(i), i + 1, SensorType.Clock, this, settings);
232 if (HasTimeStampCounter && microarchitecture != Microarchitecture.Unknown)
233 ActivateSensor(coreClocks[i]);
236 if (microarchitecture == Microarchitecture.SandyBridge ||
237 microarchitecture == Microarchitecture.IvyBridge)
239 powerSensors = new Sensor[energyStatusMSRs.Length];
240 lastEnergyTime = new DateTime[energyStatusMSRs.Length];
241 lastEnergyConsumed = new uint[energyStatusMSRs.Length];
244 if (Ring0.Rdmsr(MSR_RAPL_POWER_UNIT, out eax, out edx))
245 energyUnitMultiplier = 1.0f / (1 << (int)((eax >> 8) & 0x1FF));
247 if (energyUnitMultiplier != 0) {
248 for (int i = 0; i < energyStatusMSRs.Length; i++) {
249 if (!Ring0.Rdmsr(energyStatusMSRs[i], out eax, out edx))
252 lastEnergyTime[i] = DateTime.UtcNow;
253 lastEnergyConsumed[i] = eax;
254 powerSensors[i] = new Sensor(powerSensorLabels[i], i,
255 SensorType.Power, this, settings);
256 ActivateSensor(powerSensors[i]);
264 protected override uint[] GetMSRs() {
268 IA32_THERM_STATUS_MSR,
269 IA32_TEMPERATURE_TARGET,
270 IA32_PACKAGE_THERM_STATUS,
272 MSR_PKG_ENERY_STATUS,
273 MSR_DRAM_ENERGY_STATUS,
274 MSR_PP0_ENERY_STATUS,
279 public override string GetReport() {
280 StringBuilder r = new StringBuilder();
281 r.Append(base.GetReport());
283 r.Append("Microarchitecture: ");
284 r.AppendLine(microarchitecture.ToString());
285 r.Append("Time Stamp Counter Multiplier: ");
286 r.AppendLine(timeStampCounterMultiplier.ToString(
287 CultureInfo.InvariantCulture));
293 public override void Update() {
296 for (int i = 0; i < coreTemperatures.Length; i++) {
299 IA32_THERM_STATUS_MSR, out eax, out edx,
300 1UL << cpuid[i][0].Thread)) {
301 // if reading is valid
302 if ((eax & 0x80000000) != 0) {
303 // get the dist from tjMax from bits 22:16
304 float deltaT = ((eax & 0x007F0000) >> 16);
305 float tjMax = coreTemperatures[i].Parameters[0].Value;
306 float tSlope = coreTemperatures[i].Parameters[1].Value;
307 coreTemperatures[i].Value = tjMax - tSlope * deltaT;
309 coreTemperatures[i].Value = null;
314 if (packageTemperature != null) {
317 IA32_PACKAGE_THERM_STATUS, out eax, out edx,
318 1UL << cpuid[0][0].Thread)) {
319 // get the dist from tjMax from bits 22:16
320 float deltaT = ((eax & 0x007F0000) >> 16);
321 float tjMax = packageTemperature.Parameters[0].Value;
322 float tSlope = packageTemperature.Parameters[1].Value;
323 packageTemperature.Value = tjMax - tSlope * deltaT;
325 packageTemperature.Value = null;
329 if (HasTimeStampCounter && timeStampCounterMultiplier > 0) {
330 double newBusClock = 0;
332 for (int i = 0; i < coreClocks.Length; i++) {
333 System.Threading.Thread.Sleep(1);
334 if (Ring0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
335 1UL << cpuid[i][0].Thread)) {
337 TimeStampCounterFrequency / timeStampCounterMultiplier;
338 switch (microarchitecture) {
339 case Microarchitecture.Nehalem: {
340 uint multiplier = eax & 0xff;
341 coreClocks[i].Value = (float)(multiplier * newBusClock);
343 case Microarchitecture.SandyBridge:
344 case Microarchitecture.IvyBridge: {
345 uint multiplier = (eax >> 8) & 0xff;
346 coreClocks[i].Value = (float)(multiplier * newBusClock);
350 ((eax >> 8) & 0x1f) + 0.5 * ((eax >> 14) & 1);
351 coreClocks[i].Value = (float)(multiplier * newBusClock);
355 // if IA32_PERF_STATUS is not available, assume TSC frequency
356 coreClocks[i].Value = (float)TimeStampCounterFrequency;
359 if (newBusClock > 0) {
360 this.busClock.Value = (float)newBusClock;
361 ActivateSensor(this.busClock);
365 if (powerSensors != null) {
366 foreach (Sensor sensor in powerSensors) {
371 if (!Ring0.Rdmsr(energyStatusMSRs[sensor.Index], out eax, out edx))
374 DateTime time = DateTime.UtcNow;
375 uint energyConsumed = eax;
377 (float)(time - lastEnergyTime[sensor.Index]).TotalSeconds;
378 if (deltaTime < 0.01)
381 sensor.Value = energyUnitMultiplier * unchecked(
382 energyConsumed - lastEnergyConsumed[sensor.Index]) / deltaTime;
383 lastEnergyTime[sensor.Index] = time;
384 lastEnergyConsumed[sensor.Index] = energyConsumed;