Added a first implementation for the Heatmaster fan controller.
3 Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 The contents of this file are subject to the Mozilla Public License Version
6 1.1 (the "License"); you may not use this file except in compliance with
7 the License. You may obtain a copy of the License at
9 http://www.mozilla.org/MPL/
11 Software distributed under the License is distributed on an "AS IS" basis,
12 WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 for the specific language governing rights and limitations under the License.
15 The Original Code is the Open Hardware Monitor code.
17 The Initial Developer of the Original Code is
18 Michael Möller <m.moeller@gmx.ch>.
19 Portions created by the Initial Developer are Copyright (C) 2009-2010
20 the Initial Developer. All Rights Reserved.
24 Alternatively, the contents of this file may be used under the terms of
25 either the GNU General Public License Version 2 or later (the "GPL"), or
26 the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 in which case the provisions of the GPL or the LGPL are applicable instead
28 of those above. If you wish to allow use of your version of this file only
29 under the terms of either the GPL or the LGPL, and not to allow others to
30 use your version of this file under the terms of the MPL, indicate your
31 decision by deleting the provisions above and replace them with the notice
32 and other provisions required by the GPL or the LGPL. If you do not delete
33 the provisions above, a recipient may use your version of this file under
34 the terms of any one of the MPL, the GPL or the LGPL.
39 using System.Collections.Generic;
40 using System.Diagnostics;
41 using System.Globalization;
42 using System.Reflection;
43 using System.Runtime.InteropServices;
44 using System.Threading;
47 namespace OpenHardwareMonitor.Hardware.CPU {
48 internal sealed class IntelCPU : Hardware, IHardware {
50 private int processorIndex;
51 private CPUID[][] cpuid;
52 private int coreCount;
58 private uint stepping;
60 private Sensor[] coreTemperatures;
62 private Sensor totalLoad;
63 private Sensor[] coreLoads;
64 private Sensor[] coreClocks;
65 private Sensor busClock;
67 private bool invariantTSC;
68 private double estimatedMaxClock;
70 private CPULoad cpuLoad;
72 private ulong lastTimeStampCount;
73 private long lastTime;
74 private uint maxNehalemMultiplier = 0;
76 private const uint IA32_THERM_STATUS_MSR = 0x019C;
77 private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
78 private const uint IA32_PERF_STATUS = 0x0198;
79 private const uint MSR_PLATFORM_INFO = 0xCE;
81 private string CoreString(int i) {
85 return "CPU Core #" + (i + 1);
88 private float[] Floats(float f) {
89 float[] result = new float[coreCount];
90 for (int i = 0; i < coreCount; i++)
95 public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings) {
97 this.processorIndex = processorIndex;
99 this.coreCount = cpuid.Length;
100 this.name = cpuid[0][0].Name;
102 this.family = cpuid[0][0].Family;
103 this.model = cpuid[0][0].Model;
104 this.stepping = cpuid[0][0].Stepping;
110 case 0x0F: // Intel Core (65nm)
115 tjMax = Floats(80 + 10); break;
117 tjMax = Floats(90 + 10); break;
119 tjMax = Floats(85 + 10); break;
121 tjMax = Floats(80 + 10); break;
123 tjMax = Floats(90 + 10); break;
125 tjMax = Floats(85 + 10); break;
127 tjMax = Floats(85 + 10); break;
129 case 0x17: // Intel Core (45nm)
130 tjMax = Floats(100); break;
131 case 0x1C: // Intel Atom (45nm)
134 tjMax = Floats(90); break;
136 tjMax = Floats(100); break;
138 tjMax = Floats(90); break;
140 case 0x1A: // Intel Core i7 LGA1366 (45nm)
141 case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
142 case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
143 case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
145 tjMax = new float[coreCount];
146 for (int i = 0; i < coreCount; i++) {
147 if (WinRing0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
148 out edx, (UIntPtr)(1L << cpuid[i][0].Thread)))
150 tjMax[i] = (eax >> 16) & 0xFF;
155 if (WinRing0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
156 maxNehalemMultiplier = (eax >> 8) & 0xff;
160 tjMax = Floats(100); break;
163 default: tjMax = Floats(100); break;
166 // check if processor supports a digital thermal sensor
167 if (cpuid[0][0].Data.GetLength(0) > 6 &&
168 (cpuid[0][0].Data[6, 0] & 1) != 0)
170 coreTemperatures = new Sensor[coreCount];
171 for (int i = 0; i < coreTemperatures.Length; i++) {
172 coreTemperatures[i] = new Sensor(CoreString(i), i,
173 SensorType.Temperature, this, new ParameterDescription[] {
174 new ParameterDescription(
175 "TjMax [°C]", "TjMax temperature of the core.\n" +
176 "Temperature = TjMax - TSlope * Value.", tjMax[i]),
177 new ParameterDescription("TSlope [°C]",
178 "Temperature slope of the digital thermal sensor.\n" +
179 "Temperature = TjMax - TSlope * Value.", 1)}, settings);
180 ActivateSensor(coreTemperatures[i]);
183 coreTemperatures = new Sensor[0];
187 totalLoad = new Sensor("CPU Total", 0, SensorType.Load, this, settings);
190 coreLoads = new Sensor[coreCount];
191 for (int i = 0; i < coreLoads.Length; i++)
192 coreLoads[i] = new Sensor(CoreString(i), i + 1,
193 SensorType.Load, this, settings);
194 cpuLoad = new CPULoad(cpuid);
195 if (cpuLoad.IsAvailable) {
196 foreach (Sensor sensor in coreLoads)
197 ActivateSensor(sensor);
198 if (totalLoad != null)
199 ActivateSensor(totalLoad);
202 // check if processor has TSC
203 if (cpuid[0][0].Data.GetLength(0) > 1
204 && (cpuid[0][0].Data[1, 3] & 0x10) != 0)
209 // check if processor supports invariant TSC
210 if (cpuid[0][0].ExtData.GetLength(0) > 7
211 && (cpuid[0][0].ExtData[7, 3] & 0x100) != 0)
214 invariantTSC = false;
216 // preload the function
220 // estimate the max clock in MHz
221 List<double> estimatedMaxClocks = new List<double>(3);
222 for (int i = 0; i < 3; i++)
223 estimatedMaxClocks.Add(1e-6 * EstimateMaxClock(0.025));
224 estimatedMaxClocks.Sort();
225 estimatedMaxClock = estimatedMaxClocks[1];
227 lastTimeStampCount = 0;
229 busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings);
230 coreClocks = new Sensor[coreCount];
231 for (int i = 0; i < coreClocks.Length; i++) {
233 new Sensor(CoreString(i), i + 1, SensorType.Clock, this, settings);
235 ActivateSensor(coreClocks[i]);
241 public override string Name {
245 public override Identifier Identifier {
247 return new Identifier("intelcpu",
248 processorIndex.ToString(CultureInfo.InvariantCulture));
252 public override HardwareType HardwareType {
253 get { return HardwareType.CPU; }
256 private static void AppendMSRData(StringBuilder r, uint msr, int thread) {
258 if (WinRing0.RdmsrTx(msr, out eax, out edx, (UIntPtr)(1L << thread))) {
260 r.Append((msr).ToString("X8", CultureInfo.InvariantCulture));
262 r.Append((edx).ToString("X8", CultureInfo.InvariantCulture));
264 r.Append((eax).ToString("X8", CultureInfo.InvariantCulture));
269 public override string GetReport() {
270 StringBuilder r = new StringBuilder();
272 r.AppendLine("Intel CPU");
274 r.AppendFormat("Name: {0}{1}", name, Environment.NewLine);
275 r.AppendFormat("Number of Cores: {0}{1}", coreCount,
276 Environment.NewLine);
277 r.AppendFormat("Threads per Core: {0}{1}", cpuid[0].Length,
278 Environment.NewLine);
279 r.AppendLine("TSC: " +
280 (hasTSC ? (invariantTSC ? "Invariant" : "Not Invariant") : "None"));
281 r.AppendLine(string.Format(CultureInfo.InvariantCulture,
282 "Timer Frequency: {0} MHz", Stopwatch.Frequency * 1e-6));
283 r.AppendLine(string.Format(CultureInfo.InvariantCulture,
284 "Max Clock: {0} MHz", Math.Round(estimatedMaxClock * 100) * 0.01));
287 for (int i = 0; i < cpuid.Length; i++) {
288 r.AppendLine("MSR Core #" + (i + 1));
290 r.AppendLine(" MSR EDX EAX");
291 AppendMSRData(r, MSR_PLATFORM_INFO, cpuid[i][0].Thread);
292 AppendMSRData(r, IA32_PERF_STATUS, cpuid[i][0].Thread);
293 AppendMSRData(r, IA32_THERM_STATUS_MSR, cpuid[i][0].Thread);
294 AppendMSRData(r, IA32_TEMPERATURE_TARGET, cpuid[i][0].Thread);
301 private static double EstimateMaxClock(double timeWindow) {
302 long ticks = (long)(timeWindow * Stopwatch.Frequency);
303 uint lsbBegin, msbBegin, lsbEnd, msbEnd;
305 Thread.BeginThreadAffinity();
306 long timeBegin = Stopwatch.GetTimestamp() +
307 (long)Math.Ceiling(0.001 * ticks);
308 long timeEnd = timeBegin + ticks;
309 while (Stopwatch.GetTimestamp() < timeBegin) { }
310 WinRing0.Rdtsc(out lsbBegin, out msbBegin);
311 while (Stopwatch.GetTimestamp() < timeEnd) { }
312 WinRing0.Rdtsc(out lsbEnd, out msbEnd);
313 Thread.EndThreadAffinity();
315 ulong countBegin = ((ulong)msbBegin << 32) | lsbBegin;
316 ulong countEnd = ((ulong)msbEnd << 32) | lsbEnd;
318 return (((double)(countEnd - countBegin)) * Stopwatch.Frequency) /
319 (timeEnd - timeBegin);
322 public override void Update() {
323 for (int i = 0; i < coreTemperatures.Length; i++) {
325 if (WinRing0.RdmsrTx(
326 IA32_THERM_STATUS_MSR, out eax, out edx,
327 (UIntPtr)(1L << cpuid[i][0].Thread))) {
328 // if reading is valid
329 if ((eax & 0x80000000) != 0) {
330 // get the dist from tjMax from bits 22:16
331 float deltaT = ((eax & 0x007F0000) >> 16);
332 float tjMax = coreTemperatures[i].Parameters[0].Value;
333 float tSlope = coreTemperatures[i].Parameters[1].Value;
334 coreTemperatures[i].Value = tjMax - tSlope * deltaT;
336 coreTemperatures[i].Value = null;
341 if (cpuLoad.IsAvailable) {
343 for (int i = 0; i < coreLoads.Length; i++)
344 coreLoads[i].Value = cpuLoad.GetCoreLoad(i);
345 if (totalLoad != null)
346 totalLoad.Value = cpuLoad.GetTotalLoad();
351 WinRing0.RdtscTx(out lsb, out msb, (UIntPtr)1);
352 long time = Stopwatch.GetTimestamp();
353 ulong timeStampCount = ((ulong)msb << 32) | lsb;
354 double delta = ((double)(time - lastTime)) / Stopwatch.Frequency;
358 maxClock = (timeStampCount - lastTimeStampCount) / (1e6 * delta);
360 maxClock = estimatedMaxClock;
362 double newBusClock = 0;
364 for (int i = 0; i < coreClocks.Length; i++) {
365 System.Threading.Thread.Sleep(1);
366 if (WinRing0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
367 (UIntPtr)(1L << cpuid[i][0].Thread))) {
368 if (maxNehalemMultiplier > 0) { // Core i3, i5, i7
369 uint nehalemMultiplier = eax & 0xff;
370 coreClocks[i].Value =
371 (float)(nehalemMultiplier * maxClock / maxNehalemMultiplier);
372 newBusClock = (float)(maxClock / maxNehalemMultiplier);
374 uint multiplier = (eax >> 8) & 0x1f;
375 uint maxMultiplier = (edx >> 8) & 0x1f;
376 // factor = multiplier * 2 to handle non integer multipliers
377 uint factor = (multiplier << 1) | ((eax >> 14) & 1);
378 uint maxFactor = (maxMultiplier << 1) | ((edx >> 14) & 1);
380 coreClocks[i].Value = (float)(factor * maxClock / maxFactor);
381 newBusClock = (float)(2 * maxClock / maxFactor);
384 } else { // Intel Pentium 4
385 // if IA32_PERF_STATUS is not available, assume maxClock
386 coreClocks[i].Value = (float)maxClock;
389 if (newBusClock > 0) {
390 this.busClock.Value = (float)newBusClock;
391 ActivateSensor(this.busClock);
394 lastTimeStampCount = timeStampCount;