3 Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 The contents of this file are subject to the Mozilla Public License Version
6 1.1 (the "License"); you may not use this file except in compliance with
7 the License. You may obtain a copy of the License at
9 http://www.mozilla.org/MPL/
11 Software distributed under the License is distributed on an "AS IS" basis,
12 WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 for the specific language governing rights and limitations under the License.
15 The Original Code is the Open Hardware Monitor code.
17 The Initial Developer of the Original Code is
18 Michael Möller <m.moeller@gmx.ch>.
19 Portions created by the Initial Developer are Copyright (C) 2009-2010
20 the Initial Developer. All Rights Reserved.
24 Alternatively, the contents of this file may be used under the terms of
25 either the GNU General Public License Version 2 or later (the "GPL"), or
26 the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 in which case the provisions of the GPL or the LGPL are applicable instead
28 of those above. If you wish to allow use of your version of this file only
29 under the terms of either the GPL or the LGPL, and not to allow others to
30 use your version of this file under the terms of the MPL, indicate your
31 decision by deleting the provisions above and replace them with the notice
32 and other provisions required by the GPL or the LGPL. If you do not delete
33 the provisions above, a recipient may use your version of this file under
34 the terms of any one of the MPL, the GPL or the LGPL.
39 using System.Collections.Generic;
41 using System.Diagnostics;
42 using System.Globalization;
43 using System.Reflection;
44 using System.Runtime.InteropServices;
45 using System.Threading;
48 namespace OpenHardwareMonitor.Hardware.CPU {
49 public class IntelCPU : Hardware, IHardware {
51 private int processorIndex;
52 private CPUID[][] cpuid;
53 private int coreCount;
60 private uint stepping;
62 private Sensor[] coreTemperatures;
64 private Sensor totalLoad;
65 private Sensor[] coreLoads;
66 private Sensor[] coreClocks;
67 private Sensor busClock;
69 private bool invariantTSC;
70 private double estimatedMaxClock;
72 private CPULoad cpuLoad;
74 private ulong lastTimeStampCount;
75 private long lastTime;
76 private uint maxNehalemMultiplier = 0;
78 private const uint IA32_THERM_STATUS_MSR = 0x019C;
79 private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
80 private const uint IA32_PERF_STATUS = 0x0198;
81 private const uint MSR_PLATFORM_INFO = 0xCE;
83 private string CoreString(int i) {
87 return "CPU Core #" + (i + 1);
90 private float[] Floats(float f) {
91 float[] result = new float[coreCount];
92 for (int i = 0; i < coreCount; i++)
97 public IntelCPU(int processorIndex, CPUID[][] cpuid) {
99 this.processorIndex = processorIndex;
101 this.coreCount = cpuid.Length;
102 this.name = cpuid[0][0].Name;
103 this.icon = Utilities.EmbeddedResources.GetImage("cpu.png");
105 this.family = cpuid[0][0].Family;
106 this.model = cpuid[0][0].Model;
107 this.stepping = cpuid[0][0].Stepping;
113 case 0x0F: // Intel Core (65nm)
118 tjMax = Floats(80 + 10); break;
120 tjMax = Floats(90 + 10); break;
122 tjMax = Floats(85 + 10); break;
124 tjMax = Floats(80 + 10); break;
126 tjMax = Floats(90 + 10); break;
128 tjMax = Floats(85 + 10); break;
130 tjMax = Floats(85 + 10); break;
132 case 0x17: // Intel Core (45nm)
133 tjMax = Floats(100); break;
134 case 0x1C: // Intel Atom (45nm)
137 tjMax = Floats(90); break;
139 tjMax = Floats(100); break;
141 tjMax = Floats(90); break;
143 case 0x1A: // Intel Core i7 LGA1366 (45nm)
144 case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
145 case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
146 case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
148 tjMax = new float[coreCount];
149 for (int i = 0; i < coreCount; i++) {
150 if (WinRing0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
151 out edx, (UIntPtr)(1L << cpuid[i][0].Thread)))
153 tjMax[i] = (eax >> 16) & 0xFF;
158 if (WinRing0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
159 maxNehalemMultiplier = (eax >> 8) & 0xff;
163 tjMax = Floats(100); break;
166 default: tjMax = Floats(100); break;
169 // check if processor supports a digital thermal sensor
170 if (cpuid[0][0].Data.GetLength(0) > 6 &&
171 (cpuid[0][0].Data[6, 0] & 1) != 0)
173 coreTemperatures = new Sensor[coreCount];
174 for (int i = 0; i < coreTemperatures.Length; i++) {
175 coreTemperatures[i] = new Sensor(CoreString(i), i,
176 SensorType.Temperature, this, new ParameterDescription[] {
177 new ParameterDescription(
178 "TjMax [°C]", "TjMax temperature of the core.\n" +
179 "Temperature = TjMax - TSlope * Value.", tjMax[i]),
180 new ParameterDescription("TSlope [°C]",
181 "Temperature slope of the digital thermal sensor.\n" +
182 "Temperature = TjMax - TSlope * Value.", 1)});
185 coreTemperatures = new Sensor[0];
189 totalLoad = new Sensor("CPU Total", 0, SensorType.Load, this);
192 coreLoads = new Sensor[coreCount];
193 for (int i = 0; i < coreLoads.Length; i++)
194 coreLoads[i] = new Sensor(CoreString(i), i + 1,
195 SensorType.Load, this);
196 cpuLoad = new CPULoad(cpuid);
197 if (cpuLoad.IsAvailable) {
198 foreach (Sensor sensor in coreLoads)
199 ActivateSensor(sensor);
200 if (totalLoad != null)
201 ActivateSensor(totalLoad);
204 // check if processor has TSC
205 if (cpuid[0][0].Data.GetLength(0) > 1
206 && (cpuid[0][0].Data[1, 3] & 0x10) != 0)
211 // check if processor supports invariant TSC
212 if (cpuid[0][0].ExtData.GetLength(0) > 7
213 && (cpuid[0][0].ExtData[7, 3] & 0x100) != 0)
216 invariantTSC = false;
218 // preload the function
222 // estimate the max clock in MHz
223 List<double> estimatedMaxClocks = new List<double>(3);
224 for (int i = 0; i < 3; i++)
225 estimatedMaxClocks.Add(1e-6 * EstimateMaxClock(0.025));
226 estimatedMaxClocks.Sort();
227 estimatedMaxClock = estimatedMaxClocks[1];
229 lastTimeStampCount = 0;
231 busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this);
232 coreClocks = new Sensor[coreCount];
233 for (int i = 0; i < coreClocks.Length; i++) {
235 new Sensor(CoreString(i), i + 1, SensorType.Clock, this);
237 ActivateSensor(coreClocks[i]);
243 public override string Name {
247 public override Identifier Identifier {
248 get { return new Identifier("intelcpu", processorIndex.ToString()); }
251 public override Image Icon {
255 private void AppendMSRData(StringBuilder r, uint msr, int thread) {
257 if (WinRing0.RdmsrTx(msr, out eax, out edx, (UIntPtr)(1L << thread))) {
259 r.Append((msr).ToString("X8"));
261 r.Append((edx).ToString("X8"));
263 r.Append((eax).ToString("X8"));
268 public override string GetReport() {
269 StringBuilder r = new StringBuilder();
271 r.AppendLine("Intel CPU");
273 r.AppendFormat("Name: {0}{1}", name, Environment.NewLine);
274 r.AppendFormat("Number of Cores: {0}{1}", coreCount,
275 Environment.NewLine);
276 r.AppendFormat("Threads per Core: {0}{1}", cpuid[0].Length,
277 Environment.NewLine);
278 r.AppendLine("TSC: " +
279 (hasTSC ? (invariantTSC ? "Invariant" : "Not Invariant") : "None"));
280 r.AppendLine(string.Format(CultureInfo.InvariantCulture,
281 "Timer Frequency: {0} MHz", Stopwatch.Frequency * 1e-6));
282 r.AppendLine(string.Format(CultureInfo.InvariantCulture,
283 "Max Clock: {0} MHz", Math.Round(estimatedMaxClock * 100) * 0.01));
286 for (int i = 0; i < cpuid.Length; i++) {
287 r.AppendLine("MSR Core #" + (i + 1));
289 r.AppendLine(" MSR EDX EAX");
290 AppendMSRData(r, MSR_PLATFORM_INFO, cpuid[i][0].Thread);
291 AppendMSRData(r, IA32_PERF_STATUS, cpuid[i][0].Thread);
292 AppendMSRData(r, IA32_THERM_STATUS_MSR, cpuid[i][0].Thread);
293 AppendMSRData(r, IA32_TEMPERATURE_TARGET, cpuid[i][0].Thread);
300 private double EstimateMaxClock(double timeWindow) {
301 long ticks = (long)(timeWindow * Stopwatch.Frequency);
302 uint lsbBegin, msbBegin, lsbEnd, msbEnd;
304 Thread.BeginThreadAffinity();
305 long timeBegin = Stopwatch.GetTimestamp() +
306 (long)Math.Ceiling(0.001 * ticks);
307 long timeEnd = timeBegin + ticks;
308 while (Stopwatch.GetTimestamp() < timeBegin) { }
309 WinRing0.Rdtsc(out lsbBegin, out msbBegin);
310 while (Stopwatch.GetTimestamp() < timeEnd) { }
311 WinRing0.Rdtsc(out lsbEnd, out msbEnd);
312 Thread.EndThreadAffinity();
314 ulong countBegin = ((ulong)msbBegin << 32) | lsbBegin;
315 ulong countEnd = ((ulong)msbEnd << 32) | lsbEnd;
317 return (((double)(countEnd - countBegin)) * Stopwatch.Frequency) /
318 (timeEnd - timeBegin);
321 public override void Update() {
322 for (int i = 0; i < coreTemperatures.Length; i++) {
324 if (WinRing0.RdmsrTx(
325 IA32_THERM_STATUS_MSR, out eax, out edx,
326 (UIntPtr)(1L << cpuid[i][0].Thread))) {
327 // if reading is valid
328 if ((eax & 0x80000000) != 0) {
329 // get the dist from tjMax from bits 22:16
330 float deltaT = ((eax & 0x007F0000) >> 16);
331 float tjMax = coreTemperatures[i].Parameters[0].Value;
332 float tSlope = coreTemperatures[i].Parameters[1].Value;
333 coreTemperatures[i].Value = tjMax - tSlope * deltaT;
334 ActivateSensor(coreTemperatures[i]);
336 DeactivateSensor(coreTemperatures[i]);
341 if (cpuLoad.IsAvailable) {
343 for (int i = 0; i < coreLoads.Length; i++)
344 coreLoads[i].Value = cpuLoad.GetCoreLoad(i);
345 if (totalLoad != null)
346 totalLoad.Value = cpuLoad.GetTotalLoad();
351 WinRing0.RdtscTx(out lsb, out msb, (UIntPtr)1);
352 long time = Stopwatch.GetTimestamp();
353 ulong timeStampCount = ((ulong)msb << 32) | lsb;
354 double delta = ((double)(time - lastTime)) / Stopwatch.Frequency;
358 maxClock = (timeStampCount - lastTimeStampCount) / (1e6 * delta);
360 maxClock = estimatedMaxClock;
364 for (int i = 0; i < coreClocks.Length; i++) {
365 System.Threading.Thread.Sleep(1);
366 if (WinRing0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
367 (UIntPtr)(1L << cpuid[i][0].Thread))) {
368 if (maxNehalemMultiplier > 0) { // Core i3, i5, i7
369 uint nehalemMultiplier = eax & 0xff;
370 coreClocks[i].Value =
371 (float)(nehalemMultiplier * maxClock / maxNehalemMultiplier);
372 busClock = (float)(maxClock / maxNehalemMultiplier);
374 uint multiplier = (eax >> 8) & 0x1f;
375 uint maxMultiplier = (edx >> 8) & 0x1f;
376 // factor = multiplier * 2 to handle non integer multipliers
377 uint factor = (multiplier << 1) | ((eax >> 14) & 1);
378 uint maxFactor = (maxMultiplier << 1) | ((edx >> 14) & 1);
380 coreClocks[i].Value = (float)(factor * maxClock / maxFactor);
381 busClock = (float)(2 * maxClock / maxFactor);
384 } else { // Intel Pentium 4
385 // if IA32_PERF_STATUS is not available, assume maxClock
386 coreClocks[i].Value = (float)maxClock;
390 this.busClock.Value = (float)busClock;
391 ActivateSensor(this.busClock);
394 lastTimeStampCount = timeStampCount;