Hardware/CPU/IntelCPU.cs
author moel.mich
Sun, 25 Apr 2010 19:05:15 +0000
changeset 98 4775bffe6173
parent 91 c0937b698b81
child 100 25d18bbaa9cf
permissions -rw-r--r--
Improved the stability of the crash reporting system.
     1 /*
     2   
     3   Version: MPL 1.1/GPL 2.0/LGPL 2.1
     4 
     5   The contents of this file are subject to the Mozilla Public License Version
     6   1.1 (the "License"); you may not use this file except in compliance with
     7   the License. You may obtain a copy of the License at
     8  
     9   http://www.mozilla.org/MPL/
    10 
    11   Software distributed under the License is distributed on an "AS IS" basis,
    12   WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
    13   for the specific language governing rights and limitations under the License.
    14 
    15   The Original Code is the Open Hardware Monitor code.
    16 
    17   The Initial Developer of the Original Code is 
    18   Michael Möller <m.moeller@gmx.ch>.
    19   Portions created by the Initial Developer are Copyright (C) 2009-2010
    20   the Initial Developer. All Rights Reserved.
    21 
    22   Contributor(s):
    23 
    24   Alternatively, the contents of this file may be used under the terms of
    25   either the GNU General Public License Version 2 or later (the "GPL"), or
    26   the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
    27   in which case the provisions of the GPL or the LGPL are applicable instead
    28   of those above. If you wish to allow use of your version of this file only
    29   under the terms of either the GPL or the LGPL, and not to allow others to
    30   use your version of this file under the terms of the MPL, indicate your
    31   decision by deleting the provisions above and replace them with the notice
    32   and other provisions required by the GPL or the LGPL. If you do not delete
    33   the provisions above, a recipient may use your version of this file under
    34   the terms of any one of the MPL, the GPL or the LGPL.
    35  
    36 */
    37 
    38 using System;
    39 using System.Collections.Generic;
    40 using System.Drawing;
    41 using System.Diagnostics;
    42 using System.Globalization;
    43 using System.Reflection;
    44 using System.Runtime.InteropServices;
    45 using System.Threading;
    46 using System.Text;
    47 
    48 namespace OpenHardwareMonitor.Hardware.CPU {
    49   public class IntelCPU : Hardware, IHardware {
    50 
    51     private CPUID[][] cpuid;
    52     private int coreCount;
    53     
    54     private string name;
    55     private Image icon;
    56 
    57     private uint family;
    58     private uint model;
    59     private uint stepping;
    60 
    61     private Sensor[] coreTemperatures;
    62 
    63     private Sensor totalLoad;
    64     private Sensor[] coreLoads;
    65     private Sensor[] coreClocks;
    66     private Sensor busClock;    
    67     private bool hasTSC;
    68     private bool invariantTSC;    
    69     private double estimatedMaxClock;
    70 
    71     private CPULoad cpuLoad;
    72 
    73     private ulong lastTimeStampCount;    
    74     private long lastTime;
    75     private uint maxNehalemMultiplier = 0;    
    76     
    77     private const uint IA32_THERM_STATUS_MSR = 0x019C;
    78     private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
    79     private const uint IA32_PERF_STATUS = 0x0198;
    80     private const uint MSR_PLATFORM_INFO = 0xCE;
    81 
    82     private string CoreString(int i) {
    83       if (coreCount == 1)
    84         return "CPU Core";
    85       else
    86         return "CPU Core #" + (i + 1);
    87     }
    88 
    89     private float[] Floats(float f) {
    90       float[] result = new float[coreCount];
    91       for (int i = 0; i < coreCount; i++)
    92         result[i] = f;
    93       return result;
    94     }
    95 
    96     public IntelCPU(CPUID[][] cpuid) {
    97 
    98       this.cpuid = cpuid;
    99       this.coreCount = cpuid.Length;
   100       this.name = cpuid[0][0].Name;
   101       this.icon = Utilities.EmbeddedResources.GetImage("cpu.png");
   102 
   103       this.family = cpuid[0][0].Family;
   104       this.model = cpuid[0][0].Model;
   105       this.stepping = cpuid[0][0].Stepping;
   106 
   107       float[] tjMax;
   108       switch (family) {
   109         case 0x06: {
   110             switch (model) {
   111               case 0x0F: // Intel Core (65nm)
   112                 switch (stepping) {
   113                   case 0x06: // B2
   114                     switch (coreCount) {
   115                       case 2:
   116                         tjMax = Floats(80 + 10); break;
   117                       case 4:
   118                         tjMax = Floats(90 + 10); break;
   119                       default:
   120                         tjMax = Floats(85 + 10); break;
   121                     }
   122                     tjMax = Floats(80 + 10); break;
   123                   case 0x0B: // G0
   124                     tjMax = Floats(90 + 10); break;
   125                   case 0x0D: // M0
   126                     tjMax = Floats(85 + 10); break;
   127                   default:
   128                     tjMax = Floats(85 + 10); break;
   129                 } break;
   130               case 0x17: // Intel Core (45nm)
   131                 tjMax = Floats(100); break;
   132               case 0x1C: // Intel Atom 
   133                 tjMax = Floats(90); break;
   134               case 0x1A: // Intel Core i7 LGA1366 (45nm)
   135               case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
   136               case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
   137               case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
   138                 uint eax, edx;
   139                 tjMax = new float[coreCount];
   140                 for (int i = 0; i < coreCount; i++) {
   141                   if (WinRing0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
   142                     out edx, (UIntPtr)(1L << cpuid[i][0].Thread)))
   143                   {
   144                     tjMax[i] = (eax >> 16) & 0xFF;
   145                   } else {
   146                     tjMax[i] = 100;
   147                   }
   148                 }
   149                 if (WinRing0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
   150                   maxNehalemMultiplier = (eax >> 8) & 0xff;
   151                 }
   152                 break;
   153               default:
   154                 tjMax = Floats(100); break;
   155             }
   156           } break;
   157         default: tjMax = Floats(100); break;
   158       }
   159 
   160       // check if processor supports a digital thermal sensor
   161       if (cpuid[0][0].Data.GetLength(0) > 6 && 
   162         (cpuid[0][0].Data[6, 0] & 1) != 0) 
   163       {
   164         coreTemperatures = new Sensor[coreCount];
   165         for (int i = 0; i < coreTemperatures.Length; i++) {
   166           coreTemperatures[i] = new Sensor(CoreString(i), i, tjMax[i],
   167             SensorType.Temperature, this, new ParameterDescription[] { 
   168               new ParameterDescription(
   169                 "TjMax", "TjMax temperature of the core.\n" + 
   170                 "Temperature = TjMax - TSlope * Value.", tjMax[i]), 
   171               new ParameterDescription(
   172                 "TSlope", "Temperature slope of the digital thermal sensor.\n" + 
   173                 "Temperature = TjMax - TSlope * Value.", 1)});
   174         }
   175       } else {
   176         coreTemperatures = new Sensor[0];
   177       }
   178 
   179       if (coreCount > 1)
   180         totalLoad = new Sensor("CPU Total", 0, SensorType.Load, this);
   181       else
   182         totalLoad = null;
   183       coreLoads = new Sensor[coreCount];
   184       for (int i = 0; i < coreLoads.Length; i++)
   185         coreLoads[i] = new Sensor(CoreString(i), i + 1,
   186           SensorType.Load, this);     
   187       cpuLoad = new CPULoad(cpuid);
   188       if (cpuLoad.IsAvailable) {
   189         foreach (Sensor sensor in coreLoads)
   190           ActivateSensor(sensor);
   191         if (totalLoad != null)
   192           ActivateSensor(totalLoad);
   193       }
   194 
   195       // check if processor has TSC
   196       if (cpuid[0][0].Data.GetLength(0) > 1 
   197         && (cpuid[0][0].Data[1, 3] & 0x10) != 0)
   198         hasTSC = true;
   199       else
   200         hasTSC = false; 
   201 
   202       // check if processor supports invariant TSC 
   203       if (cpuid[0][0].ExtData.GetLength(0) > 7 
   204         && (cpuid[0][0].ExtData[7, 3] & 0x100) != 0)
   205         invariantTSC = true;
   206       else
   207         invariantTSC = false;
   208 
   209       // preload the function
   210       EstimateMaxClock(0); 
   211       EstimateMaxClock(0); 
   212 
   213       // estimate the max clock in MHz      
   214       List<double> estimatedMaxClocks = new List<double>(3);
   215       for (int i = 0; i < 3; i++)
   216         estimatedMaxClocks.Add(1e-6 * EstimateMaxClock(0.025));
   217       estimatedMaxClocks.Sort();
   218       estimatedMaxClock = estimatedMaxClocks[1];
   219 
   220       lastTimeStampCount = 0;
   221       lastTime = 0;
   222       busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this);      
   223       coreClocks = new Sensor[coreCount];
   224       for (int i = 0; i < coreClocks.Length; i++) {
   225         coreClocks[i] =
   226           new Sensor(CoreString(i), i + 1, SensorType.Clock, this);
   227         if (hasTSC)
   228           ActivateSensor(coreClocks[i]);
   229       }
   230       
   231       Update();                   
   232     }
   233 
   234     public string Name {
   235       get { return name; }
   236     }
   237 
   238     public string Identifier {
   239       get { return "/intelcpu/0"; }
   240     }
   241 
   242     public Image Icon {
   243       get { return icon; }
   244     }
   245 
   246     private void AppendMSRData(StringBuilder r, uint msr, int thread) {
   247       uint eax, edx;
   248       if (WinRing0.RdmsrTx(msr, out eax, out edx, (UIntPtr)(1L << thread))) {
   249         r.Append(" ");
   250         r.Append((msr).ToString("X8"));
   251         r.Append("  ");
   252         r.Append((edx).ToString("X8"));
   253         r.Append("  ");
   254         r.Append((eax).ToString("X8"));
   255         r.AppendLine();
   256       }
   257     }
   258 
   259     public string GetReport() {
   260       StringBuilder r = new StringBuilder();
   261 
   262       r.AppendLine("Intel CPU");
   263       r.AppendLine();
   264       r.AppendFormat("Name: {0}{1}", name, Environment.NewLine);
   265       r.AppendFormat("Number of Cores: {0}{1}", coreCount, 
   266         Environment.NewLine);
   267       r.AppendFormat("Threads per Core: {0}{1}", cpuid[0].Length,
   268         Environment.NewLine);     
   269       r.AppendLine("TSC: " + 
   270         (hasTSC ? (invariantTSC ? "Invariant" : "Not Invariant") : "None"));
   271       r.AppendLine(string.Format(CultureInfo.InvariantCulture, 
   272         "Timer Frequency: {0} MHz", Stopwatch.Frequency * 1e-6));
   273       r.AppendLine(string.Format(CultureInfo.InvariantCulture,
   274         "Max Clock: {0} MHz", Math.Round(estimatedMaxClock * 100) * 0.01));
   275       r.AppendLine();
   276 
   277       for (int i = 0; i < cpuid.Length; i++) {
   278         r.AppendLine("MSR Core #" + (i + 1));
   279         r.AppendLine();
   280         r.AppendLine(" MSR       EDX       EAX");
   281         AppendMSRData(r, MSR_PLATFORM_INFO, cpuid[i][0].Thread);
   282         AppendMSRData(r, IA32_PERF_STATUS, cpuid[i][0].Thread);
   283         AppendMSRData(r, IA32_THERM_STATUS_MSR, cpuid[i][0].Thread);
   284         AppendMSRData(r, IA32_TEMPERATURE_TARGET, cpuid[i][0].Thread);
   285         r.AppendLine();
   286       }
   287 
   288       return r.ToString();
   289     }
   290 
   291     private double EstimateMaxClock(double timeWindow) {
   292       long ticks = (long)(timeWindow * Stopwatch.Frequency);
   293       uint lsbBegin, msbBegin, lsbEnd, msbEnd; 
   294       
   295       Thread.BeginThreadAffinity();
   296       long timeBegin = Stopwatch.GetTimestamp() + 
   297         (long)Math.Ceiling(0.001 * ticks);
   298       long timeEnd = timeBegin + ticks;      
   299       while (Stopwatch.GetTimestamp() < timeBegin) { }
   300       WinRing0.Rdtsc(out lsbBegin, out msbBegin);
   301       while (Stopwatch.GetTimestamp() < timeEnd) { }
   302       WinRing0.Rdtsc(out lsbEnd, out msbEnd);
   303       Thread.EndThreadAffinity();
   304 
   305       ulong countBegin = ((ulong)msbBegin << 32) | lsbBegin;
   306       ulong countEnd = ((ulong)msbEnd << 32) | lsbEnd;
   307 
   308       return (((double)(countEnd - countBegin)) * Stopwatch.Frequency) / 
   309         (timeEnd - timeBegin);
   310     }
   311 
   312     public void Update() {      
   313       for (int i = 0; i < coreTemperatures.Length; i++) {
   314         uint eax, edx;
   315         if (WinRing0.RdmsrTx(
   316           IA32_THERM_STATUS_MSR, out eax, out edx, 
   317             (UIntPtr)(1L << cpuid[i][0].Thread))) {
   318           // if reading is valid
   319           if ((eax & 0x80000000) != 0) {
   320             // get the dist from tjMax from bits 22:16
   321             float deltaT = ((eax & 0x007F0000) >> 16);
   322             float tjMax = coreTemperatures[i].Parameters[0].Value;
   323             float tSlope = coreTemperatures[i].Parameters[1].Value;
   324             coreTemperatures[i].Value = tjMax - tSlope * deltaT;
   325             ActivateSensor(coreTemperatures[i]);
   326           } else {
   327             DeactivateSensor(coreTemperatures[i]);
   328           }
   329         }
   330       }
   331 
   332       if (cpuLoad.IsAvailable) {
   333         cpuLoad.Update();
   334         for (int i = 0; i < coreLoads.Length; i++)
   335           coreLoads[i].Value = cpuLoad.GetCoreLoad(i);
   336         if (totalLoad != null)
   337           totalLoad.Value = cpuLoad.GetTotalLoad();
   338       }
   339 
   340       if (hasTSC) {
   341         uint lsb, msb;
   342         WinRing0.RdtscTx(out lsb, out msb, (UIntPtr)1);
   343         long time = Stopwatch.GetTimestamp();
   344         ulong timeStampCount = ((ulong)msb << 32) | lsb;
   345         double delta = ((double)(time - lastTime)) / Stopwatch.Frequency;
   346         if (delta > 0.5) {
   347           double maxClock;
   348           if (invariantTSC)
   349             maxClock = (timeStampCount - lastTimeStampCount) / (1e6 * delta);
   350           else
   351             maxClock = estimatedMaxClock;
   352 
   353           double busClock = 0;
   354           uint eax, edx;
   355           for (int i = 0; i < coreClocks.Length; i++) {
   356             System.Threading.Thread.Sleep(1);
   357             if (WinRing0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
   358               (UIntPtr)(1L << cpuid[i][0].Thread))) {
   359               if (maxNehalemMultiplier > 0) { // Core i3, i5, i7
   360                 uint nehalemMultiplier = eax & 0xff;
   361                 coreClocks[i].Value =
   362                   (float)(nehalemMultiplier * maxClock / maxNehalemMultiplier);
   363                 busClock = (float)(maxClock / maxNehalemMultiplier);
   364               } else { // Core 2
   365                 uint multiplier = (eax >> 8) & 0x1f;
   366                 uint maxMultiplier = (edx >> 8) & 0x1f;
   367                 // factor = multiplier * 2 to handle non integer multipliers 
   368                 uint factor = (multiplier << 1) | ((eax >> 14) & 1);
   369                 uint maxFactor = (maxMultiplier << 1) | ((edx >> 14) & 1);
   370                 if (maxFactor > 0) {
   371                   coreClocks[i].Value = (float)(factor * maxClock / maxFactor);
   372                   busClock = (float)(2 * maxClock / maxFactor);
   373                 }
   374               }
   375             } else { // Intel Pentium 4
   376               // if IA32_PERF_STATUS is not available, assume maxClock
   377               coreClocks[i].Value = (float)maxClock;
   378             }
   379           }
   380           if (busClock > 0) {
   381             this.busClock.Value = (float)busClock;
   382             ActivateSensor(this.busClock);
   383           }
   384         }
   385         lastTimeStampCount = timeStampCount;
   386         lastTime = time;
   387       }
   388     }
   389   }  
   390 }