Implemented APIC based CPU enumeration (Issue 41).
3 Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 The contents of this file are subject to the Mozilla Public License Version
6 1.1 (the "License"); you may not use this file except in compliance with
7 the License. You may obtain a copy of the License at
9 http://www.mozilla.org/MPL/
11 Software distributed under the License is distributed on an "AS IS" basis,
12 WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 for the specific language governing rights and limitations under the License.
15 The Original Code is the Open Hardware Monitor code.
17 The Initial Developer of the Original Code is
18 Michael Möller <m.moeller@gmx.ch>.
19 Portions created by the Initial Developer are Copyright (C) 2009-2010
20 the Initial Developer. All Rights Reserved.
24 Alternatively, the contents of this file may be used under the terms of
25 either the GNU General Public License Version 2 or later (the "GPL"), or
26 the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 in which case the provisions of the GPL or the LGPL are applicable instead
28 of those above. If you wish to allow use of your version of this file only
29 under the terms of either the GPL or the LGPL, and not to allow others to
30 use your version of this file under the terms of the MPL, indicate your
31 decision by deleting the provisions above and replace them with the notice
32 and other provisions required by the GPL or the LGPL. If you do not delete
33 the provisions above, a recipient may use your version of this file under
34 the terms of any one of the MPL, the GPL or the LGPL.
39 using System.Collections.Generic;
41 using System.Diagnostics;
42 using System.Globalization;
43 using System.Reflection;
44 using System.Runtime.InteropServices;
45 using System.Threading;
48 namespace OpenHardwareMonitor.Hardware.CPU {
49 public class IntelCPU : Hardware, IHardware {
51 private CPUID[][] cpuid;
52 private int coreCount;
59 private uint stepping;
61 private Sensor[] coreTemperatures;
63 private Sensor totalLoad;
64 private Sensor[] coreLoads;
65 private Sensor[] coreClocks;
66 private Sensor busClock;
68 private bool invariantTSC;
69 private double estimatedMaxClock;
71 private CPULoad cpuLoad;
73 private ulong lastTimeStampCount;
74 private long lastTime;
75 private uint maxNehalemMultiplier = 0;
77 private const uint IA32_THERM_STATUS_MSR = 0x019C;
78 private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
79 private const uint IA32_PERF_STATUS = 0x0198;
80 private const uint MSR_PLATFORM_INFO = 0xCE;
82 private string CoreString(int i) {
86 return "CPU Core #" + (i + 1);
89 private float[] Floats(float f) {
90 float[] result = new float[coreCount];
91 for (int i = 0; i < coreCount; i++)
96 public IntelCPU(CPUID[][] cpuid) {
99 this.coreCount = cpuid.Length;
100 this.name = cpuid[0][0].Name;
101 this.icon = Utilities.EmbeddedResources.GetImage("cpu.png");
103 this.family = cpuid[0][0].Family;
104 this.model = cpuid[0][0].Model;
105 this.stepping = cpuid[0][0].Stepping;
111 case 0x0F: // Intel Core (65nm)
116 tjMax = Floats(80 + 10); break;
118 tjMax = Floats(90 + 10); break;
120 tjMax = Floats(85 + 10); break;
122 tjMax = Floats(80 + 10); break;
124 tjMax = Floats(90 + 10); break;
126 tjMax = Floats(85 + 10); break;
128 tjMax = Floats(85 + 10); break;
130 case 0x17: // Intel Core (45nm)
131 tjMax = Floats(100); break;
132 case 0x1C: // Intel Atom
133 tjMax = Floats(90); break;
134 case 0x1A: // Intel Core i7 LGA1366 (45nm)
135 case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
136 case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
138 tjMax = new float[coreCount];
139 for (int i = 0; i < coreCount; i++) {
140 if (WinRing0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
141 out edx, (UIntPtr)(1L << cpuid[i][0].Thread)))
143 tjMax[i] = (eax >> 16) & 0xFF;
148 if (WinRing0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
149 maxNehalemMultiplier = (eax >> 8) & 0xff;
153 tjMax = Floats(100); break;
156 default: tjMax = Floats(100); break;
159 // check if processor supports a digital thermal sensor
160 if (cpuid[0][0].Data.GetLength(0) > 6 &&
161 (cpuid[0][0].Data[6, 0] & 1) != 0)
163 coreTemperatures = new Sensor[coreCount];
164 for (int i = 0; i < coreTemperatures.Length; i++) {
165 coreTemperatures[i] = new Sensor(CoreString(i), i, tjMax[i],
166 SensorType.Temperature, this, new ParameterDescription[] {
167 new ParameterDescription(
168 "TjMax", "TjMax temperature of the core.\n" +
169 "Temperature = TjMax - TSlope * Value.", tjMax[i]),
170 new ParameterDescription(
171 "TSlope", "Temperature slope of the digital thermal sensor.\n" +
172 "Temperature = TjMax - TSlope * Value.", 1)});
175 coreTemperatures = new Sensor[0];
179 totalLoad = new Sensor("CPU Total", 0, SensorType.Load, this);
182 coreLoads = new Sensor[coreCount];
183 for (int i = 0; i < coreLoads.Length; i++)
184 coreLoads[i] = new Sensor(CoreString(i), i + 1,
185 SensorType.Load, this);
186 cpuLoad = new CPULoad(cpuid);
187 if (cpuLoad.IsAvailable) {
188 foreach (Sensor sensor in coreLoads)
189 ActivateSensor(sensor);
190 if (totalLoad != null)
191 ActivateSensor(totalLoad);
194 // check if processor has TSC
195 if (cpuid[0][0].Data.GetLength(0) > 1
196 && (cpuid[0][0].Data[1, 3] & 0x10) != 0)
201 // check if processor supports invariant TSC
202 if (cpuid[0][0].ExtData.GetLength(0) > 7
203 && (cpuid[0][0].ExtData[7, 3] & 0x100) != 0)
206 invariantTSC = false;
208 // preload the function
212 // estimate the max clock in MHz
213 estimatedMaxClock = 1e-6 * EstimateMaxClock(0.01);
215 lastTimeStampCount = 0;
217 busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this);
218 coreClocks = new Sensor[coreCount];
219 for (int i = 0; i < coreClocks.Length; i++) {
221 new Sensor(CoreString(i), i + 1, SensorType.Clock, this);
223 ActivateSensor(coreClocks[i]);
233 public string Identifier {
234 get { return "/intelcpu/0"; }
241 private void AppendMSRData(StringBuilder r, uint msr, int thread) {
243 if (WinRing0.RdmsrTx(msr, out eax, out edx, (UIntPtr)(1L << thread))) {
245 r.Append((msr).ToString("X8"));
247 r.Append((edx).ToString("X8"));
249 r.Append((eax).ToString("X8"));
254 public string GetReport() {
255 StringBuilder r = new StringBuilder();
257 r.AppendLine("Intel CPU");
259 r.AppendFormat("Name: {0}{1}", name, Environment.NewLine);
260 r.AppendFormat("Number of Cores: {0}{1}", coreCount,
261 Environment.NewLine);
262 r.AppendFormat("Threads per Core: {0}{1}", cpuid[0].Length,
263 Environment.NewLine);
264 r.AppendLine("TSC: " +
265 (hasTSC ? (invariantTSC ? "Invariant" : "Not Invariant") : "None"));
266 r.AppendLine(string.Format(CultureInfo.InvariantCulture,
267 "Timer Frequency: {0} MHz", Stopwatch.Frequency * 1e-6));
268 r.AppendLine(string.Format(CultureInfo.InvariantCulture,
269 "Max Clock: {0} MHz", Math.Round(estimatedMaxClock * 100) * 0.01));
272 for (int i = 0; i < cpuid.Length; i++) {
273 r.AppendLine("MSR Core #" + (i + 1));
275 r.AppendLine(" MSR EDX EAX");
276 AppendMSRData(r, MSR_PLATFORM_INFO, cpuid[i][0].Thread);
277 AppendMSRData(r, IA32_PERF_STATUS, cpuid[i][0].Thread);
278 AppendMSRData(r, IA32_THERM_STATUS_MSR, cpuid[i][0].Thread);
279 AppendMSRData(r, IA32_TEMPERATURE_TARGET, cpuid[i][0].Thread);
286 private double EstimateMaxClock(double timeWindow) {
287 long ticks = (long)(timeWindow * Stopwatch.Frequency);
288 uint lsbBegin, msbBegin, lsbEnd, msbEnd;
290 Thread.BeginThreadAffinity();
291 long timeBegin = Stopwatch.GetTimestamp() + 2;
292 long timeEnd = timeBegin + ticks;
293 while (Stopwatch.GetTimestamp() < timeBegin) { }
294 WinRing0.Rdtsc(out lsbBegin, out msbBegin);
295 while (Stopwatch.GetTimestamp() < timeEnd) { }
296 WinRing0.Rdtsc(out lsbEnd, out msbEnd);
297 Thread.EndThreadAffinity();
299 ulong countBegin = ((ulong)msbBegin << 32) | lsbBegin;
300 ulong countEnd = ((ulong)msbEnd << 32) | lsbEnd;
302 return (((double)(countEnd - countBegin)) * Stopwatch.Frequency) /
303 (timeEnd - timeBegin);
306 public void Update() {
307 for (int i = 0; i < coreTemperatures.Length; i++) {
309 if (WinRing0.RdmsrTx(
310 IA32_THERM_STATUS_MSR, out eax, out edx,
311 (UIntPtr)(1L << cpuid[i][0].Thread))) {
312 // if reading is valid
313 if ((eax & 0x80000000) != 0) {
314 // get the dist from tjMax from bits 22:16
315 float deltaT = ((eax & 0x007F0000) >> 16);
316 float tjMax = coreTemperatures[i].Parameters[0].Value;
317 float tSlope = coreTemperatures[i].Parameters[1].Value;
318 coreTemperatures[i].Value = tjMax - tSlope * deltaT;
319 ActivateSensor(coreTemperatures[i]);
321 DeactivateSensor(coreTemperatures[i]);
326 if (cpuLoad.IsAvailable) {
328 for (int i = 0; i < coreLoads.Length; i++)
329 coreLoads[i].Value = cpuLoad.GetCoreLoad(i);
330 if (totalLoad != null)
331 totalLoad.Value = cpuLoad.GetTotalLoad();
336 WinRing0.RdtscTx(out lsb, out msb, (UIntPtr)1);
337 long time = Stopwatch.GetTimestamp();
338 ulong timeStampCount = ((ulong)msb << 32) | lsb;
339 double delta = ((double)(time - lastTime)) / Stopwatch.Frequency;
343 maxClock = (timeStampCount - lastTimeStampCount) / (1e6 * delta);
345 maxClock = estimatedMaxClock;
349 for (int i = 0; i < coreClocks.Length; i++) {
350 System.Threading.Thread.Sleep(1);
351 if (WinRing0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
352 (UIntPtr)(1L << cpuid[i][0].Thread))) {
353 if (maxNehalemMultiplier > 0) { // Core i3, i5, i7
354 uint nehalemMultiplier = eax & 0xff;
355 coreClocks[i].Value =
356 (float)(nehalemMultiplier * maxClock / maxNehalemMultiplier);
357 busClock = (float)(maxClock / maxNehalemMultiplier);
359 uint multiplier = (eax >> 8) & 0x1f;
360 uint maxMultiplier = (edx >> 8) & 0x1f;
361 // factor = multiplier * 2 to handle non integer multipliers
362 uint factor = (multiplier << 1) | ((eax >> 14) & 1);
363 uint maxFactor = (maxMultiplier << 1) | ((edx >> 14) & 1);
365 coreClocks[i].Value = (float)(factor * maxClock / maxFactor);
366 busClock = (float)(2 * maxClock / maxFactor);
369 } else { // Intel Pentium 4
370 // if IA32_PERF_STATUS is not available, assume maxClock
371 coreClocks[i].Value = (float)maxClock;
375 this.busClock.Value = (float)busClock;
376 ActivateSensor(this.busClock);
379 lastTimeStampCount = timeStampCount;