moel@1
|
1 |
/*
|
moel@1
|
2 |
|
moel@1
|
3 |
Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
moel@1
|
4 |
|
moel@1
|
5 |
The contents of this file are subject to the Mozilla Public License Version
|
moel@1
|
6 |
1.1 (the "License"); you may not use this file except in compliance with
|
moel@1
|
7 |
the License. You may obtain a copy of the License at
|
moel@1
|
8 |
|
moel@1
|
9 |
http://www.mozilla.org/MPL/
|
moel@1
|
10 |
|
moel@1
|
11 |
Software distributed under the License is distributed on an "AS IS" basis,
|
moel@1
|
12 |
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
moel@1
|
13 |
for the specific language governing rights and limitations under the License.
|
moel@1
|
14 |
|
moel@1
|
15 |
The Original Code is the Open Hardware Monitor code.
|
moel@1
|
16 |
|
moel@1
|
17 |
The Initial Developer of the Original Code is
|
moel@1
|
18 |
Michael Möller <m.moeller@gmx.ch>.
|
moel@1
|
19 |
Portions created by the Initial Developer are Copyright (C) 2009-2010
|
moel@1
|
20 |
the Initial Developer. All Rights Reserved.
|
moel@1
|
21 |
|
moel@1
|
22 |
Contributor(s):
|
moel@1
|
23 |
|
moel@1
|
24 |
Alternatively, the contents of this file may be used under the terms of
|
moel@1
|
25 |
either the GNU General Public License Version 2 or later (the "GPL"), or
|
moel@1
|
26 |
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
moel@1
|
27 |
in which case the provisions of the GPL or the LGPL are applicable instead
|
moel@1
|
28 |
of those above. If you wish to allow use of your version of this file only
|
moel@1
|
29 |
under the terms of either the GPL or the LGPL, and not to allow others to
|
moel@1
|
30 |
use your version of this file under the terms of the MPL, indicate your
|
moel@1
|
31 |
decision by deleting the provisions above and replace them with the notice
|
moel@1
|
32 |
and other provisions required by the GPL or the LGPL. If you do not delete
|
moel@1
|
33 |
the provisions above, a recipient may use your version of this file under
|
moel@1
|
34 |
the terms of any one of the MPL, the GPL or the LGPL.
|
moel@1
|
35 |
|
moel@1
|
36 |
*/
|
moel@1
|
37 |
|
moel@1
|
38 |
using System;
|
moel@219
|
39 |
using System.Globalization;
|
moel@219
|
40 |
using System.Text;
|
moel@1
|
41 |
|
moel@1
|
42 |
namespace OpenHardwareMonitor.Hardware.CPU {
|
moel@191
|
43 |
internal sealed class IntelCPU : GenericCPU {
|
moel@46
|
44 |
|
moel@219
|
45 |
private enum Microarchitecture {
|
moel@219
|
46 |
Unknown,
|
moel@219
|
47 |
Core,
|
moel@219
|
48 |
Atom,
|
moel@219
|
49 |
Nehalem
|
moel@219
|
50 |
}
|
moel@219
|
51 |
|
moel@195
|
52 |
private readonly Sensor[] coreTemperatures;
|
moel@195
|
53 |
private readonly Sensor[] coreClocks;
|
moel@195
|
54 |
private readonly Sensor busClock;
|
moel@63
|
55 |
|
moel@219
|
56 |
private readonly Microarchitecture microarchitecture;
|
moel@219
|
57 |
private readonly double timeStampCounterMultiplier;
|
moel@79
|
58 |
|
moel@1
|
59 |
private const uint IA32_THERM_STATUS_MSR = 0x019C;
|
moel@4
|
60 |
private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
|
moel@44
|
61 |
private const uint IA32_PERF_STATUS = 0x0198;
|
moel@46
|
62 |
private const uint MSR_PLATFORM_INFO = 0xCE;
|
moel@1
|
63 |
|
moel@69
|
64 |
private float[] Floats(float f) {
|
moel@69
|
65 |
float[] result = new float[coreCount];
|
moel@69
|
66 |
for (int i = 0; i < coreCount; i++)
|
moel@69
|
67 |
result[i] = f;
|
moel@69
|
68 |
return result;
|
moel@69
|
69 |
}
|
moel@69
|
70 |
|
moel@191
|
71 |
public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings)
|
moel@191
|
72 |
: base(processorIndex, cpuid, settings)
|
moel@191
|
73 |
{
|
moel@219
|
74 |
// set tjMax
|
moel@69
|
75 |
float[] tjMax;
|
moel@49
|
76 |
switch (family) {
|
moel@49
|
77 |
case 0x06: {
|
moel@49
|
78 |
switch (model) {
|
moel@219
|
79 |
case 0x0F: // Intel Core 2 (65nm)
|
moel@219
|
80 |
microarchitecture = Microarchitecture.Core;
|
moel@49
|
81 |
switch (stepping) {
|
moel@49
|
82 |
case 0x06: // B2
|
moel@49
|
83 |
switch (coreCount) {
|
moel@49
|
84 |
case 2:
|
moel@69
|
85 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
86 |
case 4:
|
moel@69
|
87 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
88 |
default:
|
moel@69
|
89 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
90 |
}
|
moel@69
|
91 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
92 |
case 0x0B: // G0
|
moel@69
|
93 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
94 |
case 0x0D: // M0
|
moel@69
|
95 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
96 |
default:
|
moel@69
|
97 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
98 |
} break;
|
moel@219
|
99 |
case 0x17: // Intel Core 2 (45nm)
|
moel@219
|
100 |
microarchitecture = Microarchitecture.Core;
|
moel@69
|
101 |
tjMax = Floats(100); break;
|
moel@114
|
102 |
case 0x1C: // Intel Atom (45nm)
|
moel@219
|
103 |
microarchitecture = Microarchitecture.Atom;
|
moel@114
|
104 |
switch (stepping) {
|
moel@114
|
105 |
case 0x02: // C0
|
moel@114
|
106 |
tjMax = Floats(90); break;
|
moel@114
|
107 |
case 0x0A: // A0, B0
|
moel@114
|
108 |
tjMax = Floats(100); break;
|
moel@114
|
109 |
default:
|
moel@114
|
110 |
tjMax = Floats(90); break;
|
moel@191
|
111 |
} break;
|
moel@49
|
112 |
case 0x1A: // Intel Core i7 LGA1366 (45nm)
|
moel@49
|
113 |
case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
|
moel@49
|
114 |
case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
|
moel@91
|
115 |
case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
|
moel@219
|
116 |
microarchitecture = Microarchitecture.Nehalem;
|
moel@49
|
117 |
uint eax, edx;
|
moel@69
|
118 |
tjMax = new float[coreCount];
|
moel@69
|
119 |
for (int i = 0; i < coreCount; i++) {
|
moel@69
|
120 |
if (WinRing0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
|
moel@191
|
121 |
out edx, (UIntPtr)(1L << cpuid[i][0].Thread))) {
|
moel@69
|
122 |
tjMax[i] = (eax >> 16) & 0xFF;
|
moel@69
|
123 |
} else {
|
moel@69
|
124 |
tjMax[i] = 100;
|
moel@69
|
125 |
}
|
moel@219
|
126 |
}
|
moel@49
|
127 |
break;
|
moel@49
|
128 |
default:
|
moel@219
|
129 |
microarchitecture = Microarchitecture.Unknown;
|
moel@219
|
130 |
tjMax = Floats(100);
|
moel@219
|
131 |
break;
|
moel@49
|
132 |
}
|
moel@49
|
133 |
} break;
|
moel@219
|
134 |
default:
|
moel@219
|
135 |
microarchitecture = Microarchitecture.Unknown;
|
moel@219
|
136 |
tjMax = Floats(100);
|
moel@219
|
137 |
break;
|
moel@219
|
138 |
}
|
moel@219
|
139 |
|
moel@219
|
140 |
// set timeStampCounterMultiplier
|
moel@219
|
141 |
switch (microarchitecture) {
|
moel@219
|
142 |
case Microarchitecture.Atom:
|
moel@219
|
143 |
case Microarchitecture.Core: {
|
moel@219
|
144 |
uint eax, edx;
|
moel@219
|
145 |
if (WinRing0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) {
|
moel@219
|
146 |
timeStampCounterMultiplier =
|
moel@219
|
147 |
((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1);
|
moel@219
|
148 |
}
|
moel@219
|
149 |
} break;
|
moel@219
|
150 |
case Microarchitecture.Nehalem: {
|
moel@219
|
151 |
uint eax, edx;
|
moel@219
|
152 |
if (WinRing0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
|
moel@219
|
153 |
timeStampCounterMultiplier = (eax >> 8) & 0xff;
|
moel@219
|
154 |
}
|
moel@219
|
155 |
} break;
|
moel@219
|
156 |
default:
|
moel@219
|
157 |
timeStampCounterMultiplier = 1;
|
moel@219
|
158 |
break;
|
moel@49
|
159 |
}
|
moel@1
|
160 |
|
moel@44
|
161 |
// check if processor supports a digital thermal sensor
|
moel@191
|
162 |
if (cpuid[0][0].Data.GetLength(0) > 6 &&
|
moel@191
|
163 |
(cpuid[0][0].Data[6, 0] & 1) != 0) {
|
moel@44
|
164 |
coreTemperatures = new Sensor[coreCount];
|
moel@44
|
165 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@134
|
166 |
coreTemperatures[i] = new Sensor(CoreString(i), i,
|
moel@195
|
167 |
SensorType.Temperature, this, new [] {
|
moel@63
|
168 |
new ParameterDescription(
|
moel@122
|
169 |
"TjMax [°C]", "TjMax temperature of the core.\n" +
|
moel@69
|
170 |
"Temperature = TjMax - TSlope * Value.", tjMax[i]),
|
moel@122
|
171 |
new ParameterDescription("TSlope [°C]",
|
moel@122
|
172 |
"Temperature slope of the digital thermal sensor.\n" +
|
moel@165
|
173 |
"Temperature = TjMax - TSlope * Value.", 1)}, settings);
|
moel@155
|
174 |
ActivateSensor(coreTemperatures[i]);
|
moel@44
|
175 |
}
|
moel@44
|
176 |
} else {
|
moel@44
|
177 |
coreTemperatures = new Sensor[0];
|
moel@1
|
178 |
}
|
moel@49
|
179 |
|
moel@191
|
180 |
busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings);
|
moel@44
|
181 |
coreClocks = new Sensor[coreCount];
|
moel@44
|
182 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@49
|
183 |
coreClocks[i] =
|
moel@165
|
184 |
new Sensor(CoreString(i), i + 1, SensorType.Clock, this, settings);
|
moel@201
|
185 |
if (HasTimeStampCounter)
|
moel@79
|
186 |
ActivateSensor(coreClocks[i]);
|
moel@44
|
187 |
}
|
moel@191
|
188 |
|
moel@191
|
189 |
Update();
|
moel@1
|
190 |
}
|
moel@1
|
191 |
|
moel@191
|
192 |
protected override uint[] GetMSRs() {
|
moel@195
|
193 |
return new [] {
|
moel@191
|
194 |
MSR_PLATFORM_INFO,
|
moel@191
|
195 |
IA32_PERF_STATUS ,
|
moel@191
|
196 |
IA32_THERM_STATUS_MSR,
|
moel@191
|
197 |
IA32_TEMPERATURE_TARGET
|
moel@191
|
198 |
};
|
moel@1
|
199 |
}
|
moel@1
|
200 |
|
moel@219
|
201 |
public override string GetReport() {
|
moel@219
|
202 |
StringBuilder r = new StringBuilder();
|
moel@219
|
203 |
r.Append(base.GetReport());
|
moel@219
|
204 |
|
moel@219
|
205 |
r.Append("Time Stamp Counter Multiplier: ");
|
moel@219
|
206 |
r.AppendLine(timeStampCounterMultiplier.ToString(
|
moel@219
|
207 |
CultureInfo.InvariantCulture));
|
moel@219
|
208 |
r.AppendLine();
|
moel@219
|
209 |
|
moel@219
|
210 |
return r.ToString();
|
moel@219
|
211 |
}
|
moel@219
|
212 |
|
moel@191
|
213 |
public override void Update() {
|
moel@191
|
214 |
base.Update();
|
moel@1
|
215 |
|
moel@1
|
216 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@46
|
217 |
uint eax, edx;
|
moel@46
|
218 |
if (WinRing0.RdmsrTx(
|
moel@191
|
219 |
IA32_THERM_STATUS_MSR, out eax, out edx,
|
moel@90
|
220 |
(UIntPtr)(1L << cpuid[i][0].Thread))) {
|
moel@1
|
221 |
// if reading is valid
|
moel@1
|
222 |
if ((eax & 0x80000000) != 0) {
|
moel@1
|
223 |
// get the dist from tjMax from bits 22:16
|
moel@63
|
224 |
float deltaT = ((eax & 0x007F0000) >> 16);
|
moel@63
|
225 |
float tjMax = coreTemperatures[i].Parameters[0].Value;
|
moel@63
|
226 |
float tSlope = coreTemperatures[i].Parameters[1].Value;
|
moel@63
|
227 |
coreTemperatures[i].Value = tjMax - tSlope * deltaT;
|
moel@24
|
228 |
} else {
|
moel@155
|
229 |
coreTemperatures[i].Value = null;
|
moel@1
|
230 |
}
|
moel@79
|
231 |
}
|
moel@24
|
232 |
}
|
moel@24
|
233 |
|
moel@201
|
234 |
if (HasTimeStampCounter) {
|
moel@191
|
235 |
double newBusClock = 0;
|
moel@191
|
236 |
uint eax, edx;
|
moel@191
|
237 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@191
|
238 |
System.Threading.Thread.Sleep(1);
|
moel@191
|
239 |
if (WinRing0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
|
moel@219
|
240 |
(UIntPtr)(1L << cpuid[i][0].Thread)))
|
moel@219
|
241 |
{
|
moel@219
|
242 |
newBusClock =
|
moel@219
|
243 |
TimeStampCounterFrequency / timeStampCounterMultiplier;
|
moel@219
|
244 |
if (microarchitecture == Microarchitecture.Nehalem) {
|
moel@219
|
245 |
uint multiplier = eax & 0xff;
|
moel@219
|
246 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@219
|
247 |
} else {
|
moel@219
|
248 |
double multiplier = ((eax >> 8) & 0x1f) + 0.5 * ((eax >> 14) & 1);
|
moel@219
|
249 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@219
|
250 |
}
|
moel@219
|
251 |
} else {
|
moel@201
|
252 |
// if IA32_PERF_STATUS is not available, assume TSC frequency
|
moel@201
|
253 |
coreClocks[i].Value = (float)TimeStampCounterFrequency;
|
moel@46
|
254 |
}
|
moel@44
|
255 |
}
|
moel@191
|
256 |
if (newBusClock > 0) {
|
moel@191
|
257 |
this.busClock.Value = (float)newBusClock;
|
moel@191
|
258 |
ActivateSensor(this.busClock);
|
moel@191
|
259 |
}
|
moel@44
|
260 |
}
|
moel@46
|
261 |
}
|
moel@191
|
262 |
}
|
moel@1
|
263 |
}
|