moel@1
|
1 |
/*
|
moel@1
|
2 |
|
moel@1
|
3 |
Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
moel@1
|
4 |
|
moel@1
|
5 |
The contents of this file are subject to the Mozilla Public License Version
|
moel@1
|
6 |
1.1 (the "License"); you may not use this file except in compliance with
|
moel@1
|
7 |
the License. You may obtain a copy of the License at
|
moel@1
|
8 |
|
moel@1
|
9 |
http://www.mozilla.org/MPL/
|
moel@1
|
10 |
|
moel@1
|
11 |
Software distributed under the License is distributed on an "AS IS" basis,
|
moel@1
|
12 |
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
moel@1
|
13 |
for the specific language governing rights and limitations under the License.
|
moel@1
|
14 |
|
moel@1
|
15 |
The Original Code is the Open Hardware Monitor code.
|
moel@1
|
16 |
|
moel@1
|
17 |
The Initial Developer of the Original Code is
|
moel@1
|
18 |
Michael Möller <m.moeller@gmx.ch>.
|
moel@1
|
19 |
Portions created by the Initial Developer are Copyright (C) 2009-2010
|
moel@1
|
20 |
the Initial Developer. All Rights Reserved.
|
moel@1
|
21 |
|
moel@1
|
22 |
Contributor(s):
|
moel@1
|
23 |
|
moel@1
|
24 |
Alternatively, the contents of this file may be used under the terms of
|
moel@1
|
25 |
either the GNU General Public License Version 2 or later (the "GPL"), or
|
moel@1
|
26 |
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
moel@1
|
27 |
in which case the provisions of the GPL or the LGPL are applicable instead
|
moel@1
|
28 |
of those above. If you wish to allow use of your version of this file only
|
moel@1
|
29 |
under the terms of either the GPL or the LGPL, and not to allow others to
|
moel@1
|
30 |
use your version of this file under the terms of the MPL, indicate your
|
moel@1
|
31 |
decision by deleting the provisions above and replace them with the notice
|
moel@1
|
32 |
and other provisions required by the GPL or the LGPL. If you do not delete
|
moel@1
|
33 |
the provisions above, a recipient may use your version of this file under
|
moel@1
|
34 |
the terms of any one of the MPL, the GPL or the LGPL.
|
moel@1
|
35 |
|
moel@1
|
36 |
*/
|
moel@1
|
37 |
|
moel@1
|
38 |
using System;
|
moel@1
|
39 |
using System.Collections.Generic;
|
moel@24
|
40 |
using System.Diagnostics;
|
moel@79
|
41 |
using System.Globalization;
|
moel@1
|
42 |
using System.Reflection;
|
moel@63
|
43 |
using System.Runtime.InteropServices;
|
moel@63
|
44 |
using System.Threading;
|
moel@1
|
45 |
using System.Text;
|
moel@1
|
46 |
|
moel@1
|
47 |
namespace OpenHardwareMonitor.Hardware.CPU {
|
moel@166
|
48 |
internal sealed class IntelCPU : Hardware, IHardware {
|
moel@1
|
49 |
|
moel@100
|
50 |
private int processorIndex;
|
moel@90
|
51 |
private CPUID[][] cpuid;
|
moel@90
|
52 |
private int coreCount;
|
moel@90
|
53 |
|
moel@1
|
54 |
private string name;
|
moel@1
|
55 |
|
moel@46
|
56 |
private uint family;
|
moel@46
|
57 |
private uint model;
|
moel@46
|
58 |
private uint stepping;
|
moel@46
|
59 |
|
moel@1
|
60 |
private Sensor[] coreTemperatures;
|
moel@63
|
61 |
|
moel@24
|
62 |
private Sensor totalLoad;
|
moel@24
|
63 |
private Sensor[] coreLoads;
|
moel@44
|
64 |
private Sensor[] coreClocks;
|
moel@90
|
65 |
private Sensor busClock;
|
moel@79
|
66 |
private bool hasTSC;
|
moel@79
|
67 |
private bool invariantTSC;
|
moel@79
|
68 |
private double estimatedMaxClock;
|
moel@79
|
69 |
|
moel@26
|
70 |
private CPULoad cpuLoad;
|
moel@44
|
71 |
|
moel@79
|
72 |
private ulong lastTimeStampCount;
|
moel@44
|
73 |
private long lastTime;
|
moel@79
|
74 |
private uint maxNehalemMultiplier = 0;
|
moel@26
|
75 |
|
moel@1
|
76 |
private const uint IA32_THERM_STATUS_MSR = 0x019C;
|
moel@4
|
77 |
private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
|
moel@44
|
78 |
private const uint IA32_PERF_STATUS = 0x0198;
|
moel@46
|
79 |
private const uint MSR_PLATFORM_INFO = 0xCE;
|
moel@1
|
80 |
|
moel@49
|
81 |
private string CoreString(int i) {
|
moel@49
|
82 |
if (coreCount == 1)
|
moel@49
|
83 |
return "CPU Core";
|
moel@49
|
84 |
else
|
moel@49
|
85 |
return "CPU Core #" + (i + 1);
|
moel@49
|
86 |
}
|
moel@49
|
87 |
|
moel@69
|
88 |
private float[] Floats(float f) {
|
moel@69
|
89 |
float[] result = new float[coreCount];
|
moel@69
|
90 |
for (int i = 0; i < coreCount; i++)
|
moel@69
|
91 |
result[i] = f;
|
moel@69
|
92 |
return result;
|
moel@69
|
93 |
}
|
moel@69
|
94 |
|
moel@165
|
95 |
public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings) {
|
moel@90
|
96 |
|
moel@100
|
97 |
this.processorIndex = processorIndex;
|
moel@90
|
98 |
this.cpuid = cpuid;
|
moel@90
|
99 |
this.coreCount = cpuid.Length;
|
moel@90
|
100 |
this.name = cpuid[0][0].Name;
|
moel@46
|
101 |
|
moel@90
|
102 |
this.family = cpuid[0][0].Family;
|
moel@90
|
103 |
this.model = cpuid[0][0].Model;
|
moel@90
|
104 |
this.stepping = cpuid[0][0].Stepping;
|
moel@63
|
105 |
|
moel@69
|
106 |
float[] tjMax;
|
moel@49
|
107 |
switch (family) {
|
moel@49
|
108 |
case 0x06: {
|
moel@49
|
109 |
switch (model) {
|
moel@49
|
110 |
case 0x0F: // Intel Core (65nm)
|
moel@49
|
111 |
switch (stepping) {
|
moel@49
|
112 |
case 0x06: // B2
|
moel@49
|
113 |
switch (coreCount) {
|
moel@49
|
114 |
case 2:
|
moel@69
|
115 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
116 |
case 4:
|
moel@69
|
117 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
118 |
default:
|
moel@69
|
119 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
120 |
}
|
moel@69
|
121 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
122 |
case 0x0B: // G0
|
moel@69
|
123 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
124 |
case 0x0D: // M0
|
moel@69
|
125 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
126 |
default:
|
moel@69
|
127 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
128 |
} break;
|
moel@49
|
129 |
case 0x17: // Intel Core (45nm)
|
moel@69
|
130 |
tjMax = Floats(100); break;
|
moel@114
|
131 |
case 0x1C: // Intel Atom (45nm)
|
moel@114
|
132 |
switch (stepping) {
|
moel@114
|
133 |
case 0x02: // C0
|
moel@114
|
134 |
tjMax = Floats(90); break;
|
moel@114
|
135 |
case 0x0A: // A0, B0
|
moel@114
|
136 |
tjMax = Floats(100); break;
|
moel@114
|
137 |
default:
|
moel@114
|
138 |
tjMax = Floats(90); break;
|
moel@114
|
139 |
} break;
|
moel@49
|
140 |
case 0x1A: // Intel Core i7 LGA1366 (45nm)
|
moel@49
|
141 |
case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
|
moel@49
|
142 |
case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
|
moel@91
|
143 |
case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
|
moel@49
|
144 |
uint eax, edx;
|
moel@69
|
145 |
tjMax = new float[coreCount];
|
moel@69
|
146 |
for (int i = 0; i < coreCount; i++) {
|
moel@69
|
147 |
if (WinRing0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
|
moel@90
|
148 |
out edx, (UIntPtr)(1L << cpuid[i][0].Thread)))
|
moel@69
|
149 |
{
|
moel@69
|
150 |
tjMax[i] = (eax >> 16) & 0xFF;
|
moel@69
|
151 |
} else {
|
moel@69
|
152 |
tjMax[i] = 100;
|
moel@69
|
153 |
}
|
moel@49
|
154 |
}
|
moel@49
|
155 |
if (WinRing0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
|
moel@49
|
156 |
maxNehalemMultiplier = (eax >> 8) & 0xff;
|
moel@49
|
157 |
}
|
moel@49
|
158 |
break;
|
moel@49
|
159 |
default:
|
moel@69
|
160 |
tjMax = Floats(100); break;
|
moel@49
|
161 |
}
|
moel@49
|
162 |
} break;
|
moel@69
|
163 |
default: tjMax = Floats(100); break;
|
moel@49
|
164 |
}
|
moel@1
|
165 |
|
moel@44
|
166 |
// check if processor supports a digital thermal sensor
|
moel@90
|
167 |
if (cpuid[0][0].Data.GetLength(0) > 6 &&
|
moel@90
|
168 |
(cpuid[0][0].Data[6, 0] & 1) != 0)
|
moel@90
|
169 |
{
|
moel@44
|
170 |
coreTemperatures = new Sensor[coreCount];
|
moel@44
|
171 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@134
|
172 |
coreTemperatures[i] = new Sensor(CoreString(i), i,
|
moel@63
|
173 |
SensorType.Temperature, this, new ParameterDescription[] {
|
moel@63
|
174 |
new ParameterDescription(
|
moel@122
|
175 |
"TjMax [°C]", "TjMax temperature of the core.\n" +
|
moel@69
|
176 |
"Temperature = TjMax - TSlope * Value.", tjMax[i]),
|
moel@122
|
177 |
new ParameterDescription("TSlope [°C]",
|
moel@122
|
178 |
"Temperature slope of the digital thermal sensor.\n" +
|
moel@165
|
179 |
"Temperature = TjMax - TSlope * Value.", 1)}, settings);
|
moel@155
|
180 |
ActivateSensor(coreTemperatures[i]);
|
moel@44
|
181 |
}
|
moel@44
|
182 |
} else {
|
moel@44
|
183 |
coreTemperatures = new Sensor[0];
|
moel@1
|
184 |
}
|
moel@49
|
185 |
|
moel@49
|
186 |
if (coreCount > 1)
|
moel@165
|
187 |
totalLoad = new Sensor("CPU Total", 0, SensorType.Load, this, settings);
|
moel@49
|
188 |
else
|
moel@49
|
189 |
totalLoad = null;
|
moel@24
|
190 |
coreLoads = new Sensor[coreCount];
|
moel@49
|
191 |
for (int i = 0; i < coreLoads.Length; i++)
|
moel@49
|
192 |
coreLoads[i] = new Sensor(CoreString(i), i + 1,
|
moel@165
|
193 |
SensorType.Load, this, settings);
|
moel@90
|
194 |
cpuLoad = new CPULoad(cpuid);
|
moel@26
|
195 |
if (cpuLoad.IsAvailable) {
|
moel@26
|
196 |
foreach (Sensor sensor in coreLoads)
|
moel@26
|
197 |
ActivateSensor(sensor);
|
moel@49
|
198 |
if (totalLoad != null)
|
moel@49
|
199 |
ActivateSensor(totalLoad);
|
moel@26
|
200 |
}
|
moel@26
|
201 |
|
moel@79
|
202 |
// check if processor has TSC
|
moel@90
|
203 |
if (cpuid[0][0].Data.GetLength(0) > 1
|
moel@90
|
204 |
&& (cpuid[0][0].Data[1, 3] & 0x10) != 0)
|
moel@79
|
205 |
hasTSC = true;
|
moel@79
|
206 |
else
|
moel@79
|
207 |
hasTSC = false;
|
moel@79
|
208 |
|
moel@79
|
209 |
// check if processor supports invariant TSC
|
moel@90
|
210 |
if (cpuid[0][0].ExtData.GetLength(0) > 7
|
moel@90
|
211 |
&& (cpuid[0][0].ExtData[7, 3] & 0x100) != 0)
|
moel@79
|
212 |
invariantTSC = true;
|
moel@79
|
213 |
else
|
moel@79
|
214 |
invariantTSC = false;
|
moel@79
|
215 |
|
moel@79
|
216 |
// preload the function
|
moel@79
|
217 |
EstimateMaxClock(0);
|
moel@79
|
218 |
EstimateMaxClock(0);
|
moel@79
|
219 |
|
moel@79
|
220 |
// estimate the max clock in MHz
|
moel@97
|
221 |
List<double> estimatedMaxClocks = new List<double>(3);
|
moel@97
|
222 |
for (int i = 0; i < 3; i++)
|
moel@97
|
223 |
estimatedMaxClocks.Add(1e-6 * EstimateMaxClock(0.025));
|
moel@97
|
224 |
estimatedMaxClocks.Sort();
|
moel@97
|
225 |
estimatedMaxClock = estimatedMaxClocks[1];
|
moel@79
|
226 |
|
moel@79
|
227 |
lastTimeStampCount = 0;
|
moel@44
|
228 |
lastTime = 0;
|
moel@165
|
229 |
busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings);
|
moel@44
|
230 |
coreClocks = new Sensor[coreCount];
|
moel@44
|
231 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@49
|
232 |
coreClocks[i] =
|
moel@165
|
233 |
new Sensor(CoreString(i), i + 1, SensorType.Clock, this, settings);
|
moel@79
|
234 |
if (hasTSC)
|
moel@79
|
235 |
ActivateSensor(coreClocks[i]);
|
moel@44
|
236 |
}
|
moel@44
|
237 |
|
moel@1
|
238 |
Update();
|
moel@1
|
239 |
}
|
moel@1
|
240 |
|
moel@110
|
241 |
public override string Name {
|
moel@1
|
242 |
get { return name; }
|
moel@1
|
243 |
}
|
moel@1
|
244 |
|
moel@110
|
245 |
public override Identifier Identifier {
|
moel@166
|
246 |
get {
|
moel@166
|
247 |
return new Identifier("intelcpu",
|
moel@166
|
248 |
processorIndex.ToString(CultureInfo.InvariantCulture));
|
moel@166
|
249 |
}
|
moel@1
|
250 |
}
|
moel@1
|
251 |
|
moel@165
|
252 |
public override HardwareType HardwareType {
|
moel@165
|
253 |
get { return HardwareType.CPU; }
|
moel@1
|
254 |
}
|
moel@1
|
255 |
|
moel@167
|
256 |
private static void AppendMSRData(StringBuilder r, uint msr, int thread) {
|
moel@49
|
257 |
uint eax, edx;
|
moel@90
|
258 |
if (WinRing0.RdmsrTx(msr, out eax, out edx, (UIntPtr)(1L << thread))) {
|
moel@49
|
259 |
r.Append(" ");
|
moel@166
|
260 |
r.Append((msr).ToString("X8", CultureInfo.InvariantCulture));
|
moel@49
|
261 |
r.Append(" ");
|
moel@166
|
262 |
r.Append((edx).ToString("X8", CultureInfo.InvariantCulture));
|
moel@49
|
263 |
r.Append(" ");
|
moel@166
|
264 |
r.Append((eax).ToString("X8", CultureInfo.InvariantCulture));
|
moel@49
|
265 |
r.AppendLine();
|
moel@49
|
266 |
}
|
moel@49
|
267 |
}
|
moel@49
|
268 |
|
moel@110
|
269 |
public override string GetReport() {
|
moel@5
|
270 |
StringBuilder r = new StringBuilder();
|
moel@5
|
271 |
|
moel@5
|
272 |
r.AppendLine("Intel CPU");
|
moel@5
|
273 |
r.AppendLine();
|
moel@5
|
274 |
r.AppendFormat("Name: {0}{1}", name, Environment.NewLine);
|
moel@63
|
275 |
r.AppendFormat("Number of Cores: {0}{1}", coreCount,
|
moel@22
|
276 |
Environment.NewLine);
|
moel@90
|
277 |
r.AppendFormat("Threads per Core: {0}{1}", cpuid[0].Length,
|
moel@90
|
278 |
Environment.NewLine);
|
moel@79
|
279 |
r.AppendLine("TSC: " +
|
moel@79
|
280 |
(hasTSC ? (invariantTSC ? "Invariant" : "Not Invariant") : "None"));
|
moel@79
|
281 |
r.AppendLine(string.Format(CultureInfo.InvariantCulture,
|
moel@79
|
282 |
"Timer Frequency: {0} MHz", Stopwatch.Frequency * 1e-6));
|
moel@79
|
283 |
r.AppendLine(string.Format(CultureInfo.InvariantCulture,
|
moel@79
|
284 |
"Max Clock: {0} MHz", Math.Round(estimatedMaxClock * 100) * 0.01));
|
moel@5
|
285 |
r.AppendLine();
|
moel@5
|
286 |
|
moel@90
|
287 |
for (int i = 0; i < cpuid.Length; i++) {
|
moel@49
|
288 |
r.AppendLine("MSR Core #" + (i + 1));
|
moel@49
|
289 |
r.AppendLine();
|
moel@49
|
290 |
r.AppendLine(" MSR EDX EAX");
|
moel@90
|
291 |
AppendMSRData(r, MSR_PLATFORM_INFO, cpuid[i][0].Thread);
|
moel@90
|
292 |
AppendMSRData(r, IA32_PERF_STATUS, cpuid[i][0].Thread);
|
moel@90
|
293 |
AppendMSRData(r, IA32_THERM_STATUS_MSR, cpuid[i][0].Thread);
|
moel@90
|
294 |
AppendMSRData(r, IA32_TEMPERATURE_TARGET, cpuid[i][0].Thread);
|
moel@49
|
295 |
r.AppendLine();
|
moel@49
|
296 |
}
|
moel@49
|
297 |
|
moel@5
|
298 |
return r.ToString();
|
moel@1
|
299 |
}
|
moel@1
|
300 |
|
moel@167
|
301 |
private static double EstimateMaxClock(double timeWindow) {
|
moel@79
|
302 |
long ticks = (long)(timeWindow * Stopwatch.Frequency);
|
moel@79
|
303 |
uint lsbBegin, msbBegin, lsbEnd, msbEnd;
|
moel@79
|
304 |
|
moel@79
|
305 |
Thread.BeginThreadAffinity();
|
moel@97
|
306 |
long timeBegin = Stopwatch.GetTimestamp() +
|
moel@97
|
307 |
(long)Math.Ceiling(0.001 * ticks);
|
moel@79
|
308 |
long timeEnd = timeBegin + ticks;
|
moel@79
|
309 |
while (Stopwatch.GetTimestamp() < timeBegin) { }
|
moel@79
|
310 |
WinRing0.Rdtsc(out lsbBegin, out msbBegin);
|
moel@79
|
311 |
while (Stopwatch.GetTimestamp() < timeEnd) { }
|
moel@79
|
312 |
WinRing0.Rdtsc(out lsbEnd, out msbEnd);
|
moel@79
|
313 |
Thread.EndThreadAffinity();
|
moel@79
|
314 |
|
moel@79
|
315 |
ulong countBegin = ((ulong)msbBegin << 32) | lsbBegin;
|
moel@79
|
316 |
ulong countEnd = ((ulong)msbEnd << 32) | lsbEnd;
|
moel@79
|
317 |
|
moel@79
|
318 |
return (((double)(countEnd - countBegin)) * Stopwatch.Frequency) /
|
moel@79
|
319 |
(timeEnd - timeBegin);
|
moel@79
|
320 |
}
|
moel@79
|
321 |
|
moel@110
|
322 |
public override void Update() {
|
moel@1
|
323 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@46
|
324 |
uint eax, edx;
|
moel@46
|
325 |
if (WinRing0.RdmsrTx(
|
moel@90
|
326 |
IA32_THERM_STATUS_MSR, out eax, out edx,
|
moel@90
|
327 |
(UIntPtr)(1L << cpuid[i][0].Thread))) {
|
moel@1
|
328 |
// if reading is valid
|
moel@1
|
329 |
if ((eax & 0x80000000) != 0) {
|
moel@1
|
330 |
// get the dist from tjMax from bits 22:16
|
moel@63
|
331 |
float deltaT = ((eax & 0x007F0000) >> 16);
|
moel@63
|
332 |
float tjMax = coreTemperatures[i].Parameters[0].Value;
|
moel@63
|
333 |
float tSlope = coreTemperatures[i].Parameters[1].Value;
|
moel@63
|
334 |
coreTemperatures[i].Value = tjMax - tSlope * deltaT;
|
moel@24
|
335 |
} else {
|
moel@155
|
336 |
coreTemperatures[i].Value = null;
|
moel@1
|
337 |
}
|
moel@79
|
338 |
}
|
moel@24
|
339 |
}
|
moel@24
|
340 |
|
moel@26
|
341 |
if (cpuLoad.IsAvailable) {
|
moel@26
|
342 |
cpuLoad.Update();
|
moel@26
|
343 |
for (int i = 0; i < coreLoads.Length; i++)
|
moel@26
|
344 |
coreLoads[i].Value = cpuLoad.GetCoreLoad(i);
|
moel@49
|
345 |
if (totalLoad != null)
|
moel@49
|
346 |
totalLoad.Value = cpuLoad.GetTotalLoad();
|
moel@24
|
347 |
}
|
moel@79
|
348 |
|
moel@79
|
349 |
if (hasTSC) {
|
moel@79
|
350 |
uint lsb, msb;
|
moel@79
|
351 |
WinRing0.RdtscTx(out lsb, out msb, (UIntPtr)1);
|
moel@79
|
352 |
long time = Stopwatch.GetTimestamp();
|
moel@79
|
353 |
ulong timeStampCount = ((ulong)msb << 32) | lsb;
|
moel@79
|
354 |
double delta = ((double)(time - lastTime)) / Stopwatch.Frequency;
|
moel@79
|
355 |
if (delta > 0.5) {
|
moel@79
|
356 |
double maxClock;
|
moel@79
|
357 |
if (invariantTSC)
|
moel@79
|
358 |
maxClock = (timeStampCount - lastTimeStampCount) / (1e6 * delta);
|
moel@79
|
359 |
else
|
moel@79
|
360 |
maxClock = estimatedMaxClock;
|
moel@79
|
361 |
|
moel@167
|
362 |
double newBusClock = 0;
|
moel@79
|
363 |
uint eax, edx;
|
moel@79
|
364 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@79
|
365 |
System.Threading.Thread.Sleep(1);
|
moel@79
|
366 |
if (WinRing0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
|
moel@90
|
367 |
(UIntPtr)(1L << cpuid[i][0].Thread))) {
|
moel@79
|
368 |
if (maxNehalemMultiplier > 0) { // Core i3, i5, i7
|
moel@79
|
369 |
uint nehalemMultiplier = eax & 0xff;
|
moel@79
|
370 |
coreClocks[i].Value =
|
moel@79
|
371 |
(float)(nehalemMultiplier * maxClock / maxNehalemMultiplier);
|
moel@167
|
372 |
newBusClock = (float)(maxClock / maxNehalemMultiplier);
|
moel@79
|
373 |
} else { // Core 2
|
moel@79
|
374 |
uint multiplier = (eax >> 8) & 0x1f;
|
moel@79
|
375 |
uint maxMultiplier = (edx >> 8) & 0x1f;
|
moel@79
|
376 |
// factor = multiplier * 2 to handle non integer multipliers
|
moel@79
|
377 |
uint factor = (multiplier << 1) | ((eax >> 14) & 1);
|
moel@79
|
378 |
uint maxFactor = (maxMultiplier << 1) | ((edx >> 14) & 1);
|
moel@79
|
379 |
if (maxFactor > 0) {
|
moel@79
|
380 |
coreClocks[i].Value = (float)(factor * maxClock / maxFactor);
|
moel@167
|
381 |
newBusClock = (float)(2 * maxClock / maxFactor);
|
moel@79
|
382 |
}
|
moel@46
|
383 |
}
|
moel@79
|
384 |
} else { // Intel Pentium 4
|
moel@79
|
385 |
// if IA32_PERF_STATUS is not available, assume maxClock
|
moel@79
|
386 |
coreClocks[i].Value = (float)maxClock;
|
moel@79
|
387 |
}
|
moel@79
|
388 |
}
|
moel@167
|
389 |
if (newBusClock > 0) {
|
moel@167
|
390 |
this.busClock.Value = (float)newBusClock;
|
moel@79
|
391 |
ActivateSensor(this.busClock);
|
moel@46
|
392 |
}
|
moel@44
|
393 |
}
|
moel@79
|
394 |
lastTimeStampCount = timeStampCount;
|
moel@79
|
395 |
lastTime = time;
|
moel@44
|
396 |
}
|
moel@46
|
397 |
}
|
moel@46
|
398 |
}
|
moel@1
|
399 |
}
|